Zur Kurzanzeige

dc.contributor.authorKoseki, Shunsuke
dc.contributor.authorMohseni, Omid
dc.contributor.authorOwaki, Dai
dc.contributor.authorHayashibe, Mitsuhiro
dc.contributor.authorSeyfarth, Andre
dc.contributor.authorAhmad Sharbafi, Maziar
dc.date.accessioned2024-09-18T11:08:28Z
dc.date.available2024-09-18T11:08:28Z
dc.date.issued2024-09-18
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4348
dc.identifier.urihttps://doi.org/10.48328/tudatalib-1551
dc.descriptionThis repository contains source code associated with the paper "Concerted Control: Modulating Joint Stiffness Using GRF for Gait Generation at Different Speeds" by Shunsuke Koseki, Omid Mohseni, Dai Owaki, Mitsuhiro Hayashibe, Andre Seyfarth, and Maziar A. Sharbafi. The code simulates a bipedal model using the MuJoCo physics engine, representing a human with a height of 180cm and a weight of 80kg. The model's movement is constrained to the sagittal plane and includes seven degrees of freedom: one torso joint (between the pelvis and the torso), two hip joints, two knee joints, and two ankle joints. The controller implemented in the model is a bioinspired, simple, and easy-to-implement walking controller, termed Concerted Control. This controller leverages a shared common signal to coordinate movements across multiple joints without relying on predefined trajectories. It builds on our previously developed Force Modulated Compliance (FMC) control concept, which modulates joint stiffness based on ground reaction forces (GRF). In Concerted Control, FMC is applied across multiple joints, enabling implicit coordination through the shared GRF signal, without the need for a centralized controller. We evaluated the performance of Concerted Control on the simulated bipedal walker and demonstrated that it can generate stable walking gaits across a wide range of speeds, from 0.7 to 1.8m/s. Additionally, robustness was assessed through external angular momentum perturbation tests, which showed the gaits to be robust. By replicating key kinematic and kinetic characteristics of human walking, Concerted Control offers a promising framework for enhancing the control of mobile robots and assistive systems.de_DE
dc.language.isoende_DE
dc.rightsCreative Commons Attribution-NonCommercial 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectConcerted Controlde_DE
dc.subjectBioinspired Walking Controllerde_DE
dc.subjectHuman Locomotion Coordinationde_DE
dc.subjectJoint Stiffness Modulationde_DE
dc.subjectRobustness Against Perturbationsde_DE
dc.subjectGRF-Modulated Joint Stiffnessde_DE
dc.subject.classification4.41-01 Automatisierungstechnik, Mechatronik, Regelungssysteme, Intelligente Technische Systeme, Robotikde_DE
dc.subject.ddc621.3
dc.titleSource Code for Concerted Control: Simulating Robust Bipedal Gaits at Various Speeds in MuJoCode_DE
dc.typeSoftwarede_DE
dc.typeModelde_DE
tud.projectDFG | GRK2761 | TP_Seyfarth_GRK_2761de_DE
tud.unitTUDa
tud.history.classificationVersion=2020-2024;407-01 Automatisierungstechnik, Regelungssysteme, Robotik, Mechatronik, Cyber Physical Systems


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Der Datensatz erscheint in:

Zur Kurzanzeige

Creative Commons Attribution-NonCommercial 4.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Creative Commons Attribution-NonCommercial 4.0