Show simple item record

dc.contributor.authorBahmani, Sherwin
dc.contributor.authorHahn, Oliver
dc.contributor.authorZamfir, Eduard
dc.contributor.authorAraslanov, Nikita
dc.contributor.authorCremers, Daniel
dc.contributor.authorRoth, Stefan
dc.date.accessioned2025-04-03T14:30:07Z
dc.date.available2025-04-03T14:30:07Z
dc.date.issued2023-07
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4533
dc.descriptionThe lack of out-of-domain generalization is a critical weakness of deep networks for semantic segmentation. Previous studies relied on the assumption of a static model, i. e., once the training process is complete, model parameters remain fixed at test time. In this work, we challenge this premise with a self-adaptive approach for semantic segmentation that adjusts the inference process to each input sample. Self-adaptation operates on two levels. First, it fine-tunes the parameters of convolutional layers to the input image using consistency regularization. Second, in Batch Normalization layers, self-adaptation interpolates between the training and the reference distribution derived from a single test sample. Despite both techniques being well known in the literature, their combination sets new state-of-the-art accuracy on synthetic-to-real generalization benchmarks. Our empirical study suggests that self-adaptation may complement the established practice of model regularization at training time for improving deep network generalization to out-of-domain data.de_DE
dc.language.isoende_DE
dc.relationIsDescribedBy;arXiv;https://arxiv.org/abs/2208.05788
dc.relationIsDescribedBy;URL;https://openreview.net/forum?id=ILNqQhGbLx
dc.relationIsDescribedBy;URL;https://github.com/visinf/self-adaptive?tab=readme-ov-file
dc.rightsApache License 2.0
dc.rights.urihttps://www.apache.org/licenses/LICENSE-2.0
dc.subjectSemantic Segmentationde_DE
dc.subjectDomain Generalisationde_DE
dc.subjectDeep Learningde_DE
dc.subjectComputer Visionde_DE
dc.subject.classification4.43-04 Künstliche Intelligenz und Maschinelle Lernverfahrende_DE
dc.subject.classification4.43-05 Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computingde_DE
dc.subject.ddc004
dc.titleSemantic Self-adaptation: Enhancing Generalization with a Single Samplede_DE
dc.typeSoftwarede_DE
tud.projectEC/H2020 | 866008 | REDde_DE
tud.projectHMWK | 500/10.001-(00012) | TAM - TP Rothde_DE
tud.unitTUDa


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Apache License 2.0
Except where otherwise noted, this item's license is described as Apache License 2.0