Zur Kurzanzeige

dc.contributor.authorHesse, Robin
dc.contributor.authorSchaub-Meyer, Simone
dc.contributor.authorRoth, Stefan
dc.date.accessioned2025-04-03T12:11:16Z
dc.date.available2025-04-03T12:11:16Z
dc.date.issued2024-12
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4531
dc.descriptionAttribution maps are one of the most established tools to explain the functioning of computer vision models. They assign importance scores to input features, indicating how relevant each feature is for the prediction of a deep neural network. While much research has gone into proposing new attribution methods, their proper evaluation remains a difficult challenge. In this work, we propose a novel evaluation protocol that overcomes two fundamental limitations of the widely used incremental-deletion protocol, i.e., the out-of-domain issue and lacking inter-model comparisons. This allows us to evaluate 23 attribution methods and how different design choices of popular vision backbones affect their attribution quality. We find that intrinsically explainable models outperform standard models and that raw attribution values exhibit a higher attribution quality than what is known from previous work. Further, we show consistent changes in the attribution quality when varying the network design, indicating that some standard design choices promote attribution quality.de_DE
dc.language.isoende_DE
dc.relationIsDescribedBy;arXiv;2407.11910
dc.rightsApache License 2.0
dc.rights.urihttps://www.apache.org/licenses/LICENSE-2.0
dc.subjectdeep learningde_DE
dc.subjectinterpretabilityde_DE
dc.subjectexplainable artificial intelligencede_DE
dc.subjectevaluationde_DE
dc.subject.classification4.43-05 Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computingde_DE
dc.subject.ddc004
dc.titleBenchmarking the Attribution Quality of Vision Modelsde_DE
dc.typeSoftwarede_DE
dc.typeModelde_DE
tud.projectEC/H2020 | 866008 | REDde_DE
tud.projectHMWK | 500/10.001-(00111) | 3AI - TP Rothde_DE
tud.projectHMWK | 500/10.001-(00012) | TAM - TP Rothde_DE
tud.projectHMWK | 500/10.001-(00111) | 3AI-NWG Schaub-Meyerde_DE
tud.unitTUDa


Dateien zu dieser Ressource

No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]
No Thumbnail [100%x60]

Der Datensatz erscheint in:

Zur Kurzanzeige

Apache License 2.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Apache License 2.0