Zur Kurzanzeige

dc.contributor.authorHahn, Oliver
dc.contributor.authorAraslanov, Nikita
dc.contributor.authorSchaub-Meyer, Simone
dc.contributor.authorRoth, Stefan
dc.date.accessioned2025-04-03T11:44:00Z
dc.date.available2025-04-03T11:44:00Z
dc.date.issued2024-09
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4530
dc.descriptionUnsupervised semantic segmentation aims to automatically partition images into semantically meaningful regions by identifying global semantic categories within an image corpus without any form of annotation. Building upon recent advances in self-supervised representation learning, we focus on how to leverage these large pre-trained models for the downstream task of unsupervised segmentation. We present PriMaPs – Principal Mask Proposals – decomposing images into semantically meaningful masks based on their feature representation. This allows us to realize unsupervised semantic segmentation by fitting class prototypes to PriMaPs with a stochastic expectation-maximization algorithm, PriMaPs-EM. Despite its conceptual simplicity, PriMaPs-EM leads to competitive results across various pre-trained backbone models, including DINO and DINOv2, and across different datasets, such as Cityscapes, COCO-Stuff, and Potsdam-3. Importantly, PriMaPs-EM is able to boost results when applied orthogonally to current state-of-the-art unsupervised semantic segmentation pipelines.de_DE
dc.language.isoende_DE
dc.relationIsDescribedBy;arXiv;https://arxiv.org/abs/2404.16818
dc.relationIsDescribedBy;URL;https://openreview.net/forum?id=UawaTQzfwy
dc.relationIsDescribedBy;URL;https://github.com/visinf/primaps
dc.rightsApache License 2.0
dc.rights.urihttps://www.apache.org/licenses/LICENSE-2.0
dc.subjectSemantic Segmentationde_DE
dc.subjectSelf-Supervisedde_DE
dc.subjectUnsupervised Semantic Segmentationde_DE
dc.subjectDeep Learningde_DE
dc.subject.classification4.43-04 Künstliche Intelligenz und Maschinelle Lernverfahrende_DE
dc.subject.ddc004
dc.titleBoosting Unsupervised Semantic Segmentation with Principal Mask Proposalsde_DE
dc.typeSoftwarede_DE
tud.projectEC/H2020 | 866008 | REDde_DE
tud.projectHMWK | 500/10.001-(00111) | 3AI - TP Rothde_DE
tud.projectHMWK | 500/10.001-(00012) | TAM - TP Rothde_DE
tud.projectHMWK | 500/10.001-(00111) | 3AI-NWG Schaub-Meyerde_DE
tud.unitTUDa


Dateien zu dieser Ressource

No Thumbnail [100%x60]
No Thumbnail [100%x60]

Der Datensatz erscheint in:

Zur Kurzanzeige

Apache License 2.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Apache License 2.0