Am 2. und 3. Juni erfolgt ein TUdatalib Upgrade auf eine neue Softwareversion. Während dieses Zeitraums steht das System nicht zur Verfügung. Weitere Informationen in Kürze. // A TUdatalib upgrade to a new software version is scheduled for June 2nd and 3rd. The system will not be available during that period. We will provide further information shortly.

Show simple item record

dc.contributor.authorZink, Robin
dc.contributor.authorLademann, Tobias
dc.date.accessioned2025-03-28T09:44:37Z
dc.date.available2025-03-28T09:44:37Z
dc.date.issued2025-03-24
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4518
dc.descriptionHere you can find the supplementary material to the paper “An Empirical Comparison of Machine Learning Methods for Thermal Load Forecasting in Industrial Production Systems”: SampleMeasurementDataETAFactoryHNLTHNHT.csv (data set with measurement data of the thermal power of Heating Network Low Temperate and Heating Network High Temperature in kW, the mean ambient temperature of the next 48 hours in °C and the production state (no production | production) of the throughput parts cleaning machine in the ETA Factory).de_DE
dc.rightsCreative Commons Attribution 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectLoad forecastingde_DE
dc.subjectThermal energyde_DE
dc.subjectMachine Learningde_DE
dc.subjectIndustrial production systemsde_DE
dc.subject.classification4.22-01 Energieverfahrenstechnikde_DE
dc.subject.ddc620
dc.titleSupplementary Material | An Empirical Comparison of Machine Learning Methods for Thermal Load Forecasting in Industrial Production Systemsde_DE
dc.typeDatasetde_DE
tud.projectBund/BMBF | 03SFK3A0-3 | SynErgie3de_DE
tud.unitTUDa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0