Supplementary Material | An Empirical Comparison of Machine Learning Methods for Thermal Load Forecasting in Industrial Production Systems
| dc.contributor.author | Zink, Robin | |
| dc.contributor.author | Lademann, Tobias | |
| dc.date.accessioned | 2025-03-28T09:44:37Z | |
| dc.date.available | 2025-03-28T09:44:37Z | |
| dc.date.created | 2025-03-24 | |
| dc.date.issued | 2025-03-28 | |
| dc.description | Here you can find the supplementary material to the paper “An Empirical Comparison of Machine Learning Methods for Thermal Load Forecasting in Industrial Production Systems”: SampleMeasurementDataETAFactoryHNLTHNHT.csv (data set with measurement data of the thermal power of Heating Network Low Temperate and Heating Network High Temperature in kW, the mean ambient temperature of the next 48 hours in °C and the production state (no production | production) of the throughput parts cleaning machine in the ETA Factory). | de_DE |
| dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4518 | |
| dc.rights.license | CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0) | |
| dc.subject | Load forecasting | de_DE |
| dc.subject | Thermal energy | de_DE |
| dc.subject | Machine Learning | de_DE |
| dc.subject | Industrial production systems | de_DE |
| dc.subject.classification | 4.22-01 | |
| dc.subject.ddc | 620 | |
| dc.title | Supplementary Material | An Empirical Comparison of Machine Learning Methods for Thermal Load Forecasting in Industrial Production Systems | de_DE |
| dc.type | Dataset | de_DE |
| dcterms.accessRights | openAccess | |
| person.identifier.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| person.identifier.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| tuda.project | Bund/BMBF | 03SFK3A0-3 | SynErgie3 | |
| tuda.unit | TUDa |
Files
Original bundle
1 - 1 of 1
| Name | Description | Size | Format | |
|---|---|---|---|---|
| SampleMeasurementDataETAFactoryHNLTHNHT.csv | 270.72 KB | comma-separated values |
