Am Montag, 7.4.2025 wird TUdatalib wegen geplanten Wartungsarbeiten am Speichersystem von 9:00 bis voraussichtlich 9:30 nur eingeschränkt nutzbar sein (kein Datenupload und Download) | Due to scheduled maintenance on the storage system, using TUdatalib will be limited on Monday, April 7 2025 from 9:00 to approx. 9:30 (no data upload or download)
Constrained C-Test Generation via Mixed-Integer Programming (Supplementary Material)
dc.contributor.author | Lee, Ji-Ung | |
dc.contributor.author | Pfetsch, Marc | |
dc.contributor.author | Gurevych, Iryna | |
dc.date.accessioned | 2024-04-08T09:54:18Z | |
dc.date.available | 2024-04-08T09:54:18Z | |
dc.date.issued | 2024-04 | |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4205 | |
dc.description | This work proposes a novel method to generate C-Tests; a deviated form of cloze tests (a gap filling exercise) where only the last part of a word is turned into a gap. In contrast to previous works that only consider varying the gap size or gap placement to achieve locally optimal solutions, we propose a mixed-integer programming (MIP) approach. This allows us to consider gap size and placement simultaneously, achieving globally optimal solutions and to directly integrate state-of-the-art models for gap difficulty prediction into the optimization problem. A user study with 40 participants across four C-Tests generation strategies (including GPT-4) shows that our approach (*MIP*) significantly outperforms two of the baseline strategies (based on gap placement and GPT-4); and performs on-par with the third (based on gap size). Our analysis shows that GPT-4 still struggles to fulfill explicit constraints during generation and that *MIP* produces C-Tests that correlate best with the perceived difficulty. We publish our code, model, and collected data consisting of 32 English C-Tests with 20 gaps each (3,200 in total) under an open source license. | de_DE |
dc.language.iso | en | de_DE |
dc.rights | Creative Commons Attribution 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | C-Test | de_DE |
dc.subject | NLP | de_DE |
dc.subject | Language Learning | de_DE |
dc.subject | Constrained Optimization | de_DE |
dc.subject | Machine Learning | de_DE |
dc.subject.classification | 4.43-04 Künstliche Intelligenz und Maschinelle Lernverfahren | de_DE |
dc.subject.classification | 4.43-05 Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing | |
dc.subject.ddc | 004 | |
dc.title | Constrained C-Test Generation via Mixed-Integer Programming (Supplementary Material) | de_DE |
dc.type | Dataset | de_DE |
dc.type | Text | de_DE |
dc.type | Software | de_DE |
tud.unit | TUDa | |
tud.history.classification | Version=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung |
Dateien zu dieser Ressource
Der Datensatz erscheint in:
-
C-Tests [3]