dc.contributor.author | Erhard, Linus C. | |
dc.contributor.author | Utt, Daniel | |
dc.contributor.author | Klomp, Arne J. | |
dc.contributor.author | Albe, Karsten | |
dc.date.accessioned | 2024-03-22T12:03:32Z | |
dc.date.available | 2024-03-22T12:03:32Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4188 | |
dc.identifier.uri | https://doi.org/10.48328/tudatalib-1394 | |
dc.description | This dataset supports the paper "Crystal structure identification with 3D convolutional neural networks with
application to high-pressure phase transitions in SiO2".
The following files are provided:
-The training database for the simple (artificial and MD) and the SiO2 structures
--> The training data is provided in two different formats. In the "simple_training_dump" and "SiO2_training_dump" files, the dump files from the MD trajectories are provided. In the "simple_training_extracted" and "SiO2_training_extracted" files 1,000,000 extracted atomic environments in a numpy format are stored.
-The holdout dataset for the simple structures
-The snapshots of the SiO2 shock simulation | de_DE |
dc.language.iso | en | de_DE |
dc.rights | Creative Commons Attribution 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.classification | 4.32-04 Computergestütztes Werkstoffdesign und Simulation von Werkstoffverhalten von atomistischer bis mikroskopischer Skala | de_DE |
dc.subject.ddc | 620 | |
dc.title | Research data for "Crystal structure identification with 3D convolutional neural networks with application to high-pressure phase transitions in SiO2" | de_DE |
dc.type | Dataset | de_DE |
tud.unit | TUDa | |
tud.history.classification | Version=2020-2024;406-04 Computergestütztes Werkstoffdesign und Simulation von Werkstoffverhalten von atomistischer bis mikroskopischer Skala | |