Zur Kurzanzeige

dc.contributor.authorLatsch, Bastian
dc.contributor.authorSchäfer, Niklas
dc.contributor.authorGrimmer, Martin
dc.contributor.authorBen Dali, Omar
dc.contributor.authorMohseni, Omid
dc.contributor.authorBleichner, Niklas
dc.contributor.authorAltmann, Alexander
dc.contributor.authorSchaumann, Stephan
dc.contributor.authorWolf, Sebastian
dc.contributor.authorSeyfarth, Andre
dc.contributor.authorBeckerle, Philipp
dc.contributor.authorKupnik, Mario
dc.date.accessioned2024-03-05T13:02:33Z
dc.date.available2024-03-05T13:02:33Z
dc.date.issued2024
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4152
dc.identifier.urihttps://doi.org/10.48328/tudatalib-1360
dc.descriptionIn the experiment, one test person wearing a ferroelectret insole in the right shoe walks on an instrumented treadmill. The dataset contains data from four ferroelectret sensors in the insole and vertical ground reaction forces (GRF) from an instrumented treadmill across five different walking speeds. The ferroelectret insole data are filtered and given in Volt. The GRF treadmill data from the right side are filtered and given in Newton. The data are segmented into steps from one heel strike to the same foot's following heel strike and normalized into 1000 data points per step. Each row contains one step with 1000 columns. The amount of steps/rows depends on the walking speed: 74 for slowest v050, 124 for fastest v150. Please find the full description in the corresponding publication, full instructions for usage in the README.md file. Copyright of thumbnail image 2024, IEEE.en
dc.language.isoenen
dc.relationIsSupplementTo;DOI;10.1109/JSEN.2024.3416847en
dc.relationIsReferencedBy;DOI;10.1109/JSEN.2024.3416847en
dc.rightsCreative Commons Attribution 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectsmart insoleen
dc.subjectgait analysisen
dc.subjecthuman locomotionen
dc.subjectpiezoelectric sensoren
dc.subjectferroelectreten
dc.subjectgait event detectionen
dc.subjectsensor characterizationen
dc.subject.classification4.41-01 Automatisierungstechnik, Mechatronik, Regelungssysteme, Intelligente Technische Systeme, Robotikde_DE
dc.subject.classification4.41-02 Messsystemede_DE
dc.subject.classification4.41-05 Arbeitswissenschaft, Ergonomie, Mensch-Maschine-Systemede_DE
dc.subject.classification4.41-06 Biomedizinische Systemtechnikde_DE
dc.subject.classification4.42-01 Elektronische Halbleiter, Bauelemente und Schaltungen, Integrierte Systeme, Sensorik, Theoretische Elektrotechnikde_DE
dc.subject.ddc621.3
dc.subject.ddc620
dc.titleDataset for Event Detection in Gait Analysis from 3D-Printed Piezoelectric PLA-Based Insole on an Instrumented Treadmillen
dc.typeDataseten
dc.typeSoftwareen
tud.projectDFG | GRK2761 | TP_Kupnik_GRK_2761de_DE
tud.projectDFG | GRK 2761 | TP_Beckerle_GRK_2761de_DE
tud.projectDFG | GRK2761 | TP_Seyfarth_GRK_2761de_DE
tud.projectDFG | GRK2761 | TP_Heidelberg_GRK_27de_DE
tud.unitTUDa
tud.history.classificationVersion=2020-2024;407-01 Automatisierungstechnik, Regelungssysteme, Robotik, Mechatronik, Cyber Physical Systems
tud.history.classificationVersion=2020-2024;407-02 Messsysteme
tud.history.classificationVersion=2020-2024;407-05 Arbeitswissenschaft, Ergonomie, Mensch-Maschine-Systeme
tud.history.classificationVersion=2020-2024;407-06 Biomedizinische Systemtechnik
tud.history.classificationVersion=2020-2024;408-01 Elektronische Halbleiter, Bauelemente und Schaltungen, Integrierte Systeme


Dateien zu dieser Ressource

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Der Datensatz erscheint in:

Zur Kurzanzeige

Creative Commons Attribution 4.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Creative Commons Attribution 4.0