dc.contributor.author | Latsch, Bastian | |
dc.contributor.author | Schäfer, Niklas | |
dc.contributor.author | Grimmer, Martin | |
dc.contributor.author | Ben Dali, Omar | |
dc.contributor.author | Mohseni, Omid | |
dc.contributor.author | Bleichner, Niklas | |
dc.contributor.author | Altmann, Alexander | |
dc.contributor.author | Schaumann, Stephan | |
dc.contributor.author | Wolf, Sebastian | |
dc.contributor.author | Seyfarth, Andre | |
dc.contributor.author | Beckerle, Philipp | |
dc.contributor.author | Kupnik, Mario | |
dc.date.accessioned | 2024-03-05T13:02:33Z | |
dc.date.available | 2024-03-05T13:02:33Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4152 | |
dc.identifier.uri | https://doi.org/10.48328/tudatalib-1360 | |
dc.description | In the experiment, one test person wearing a ferroelectret insole in the right shoe walks on an instrumented treadmill. The dataset contains data from four ferroelectret sensors in the insole and vertical ground reaction forces (GRF) from an instrumented treadmill across five different walking speeds. The ferroelectret insole data are filtered and given in Volt. The GRF treadmill data from the right side are filtered and given in Newton. The data are segmented into steps from one heel strike to the same foot's following heel strike and normalized into 1000 data points per step. Each row contains one step with 1000 columns. The amount of steps/rows depends on the walking speed: 74 for slowest v050, 124 for fastest v150.
Please find the full description in the corresponding publication, full instructions for usage in the README.md file. Copyright of thumbnail image 2024, IEEE. | en |
dc.language.iso | en | en |
dc.relation | IsSupplementTo;DOI;10.1109/JSEN.2024.3416847 | en |
dc.relation | IsReferencedBy;DOI;10.1109/JSEN.2024.3416847 | en |
dc.rights | Creative Commons Attribution 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | smart insole | en |
dc.subject | gait analysis | en |
dc.subject | human locomotion | en |
dc.subject | piezoelectric sensor | en |
dc.subject | ferroelectret | en |
dc.subject | gait event detection | en |
dc.subject | sensor characterization | en |
dc.subject.classification | 4.41-01 Automatisierungstechnik, Mechatronik, Regelungssysteme, Intelligente Technische Systeme, Robotik | de_DE |
dc.subject.classification | 4.41-02 Messsysteme | de_DE |
dc.subject.classification | 4.41-05 Arbeitswissenschaft, Ergonomie, Mensch-Maschine-Systeme | de_DE |
dc.subject.classification | 4.41-06 Biomedizinische Systemtechnik | de_DE |
dc.subject.classification | 4.42-01 Elektronische Halbleiter, Bauelemente und Schaltungen, Integrierte Systeme, Sensorik, Theoretische Elektrotechnik | de_DE |
dc.subject.ddc | 621.3 | |
dc.subject.ddc | 620 | |
dc.title | Dataset for Event Detection in Gait Analysis from 3D-Printed Piezoelectric PLA-Based Insole on an Instrumented Treadmill | en |
dc.type | Dataset | en |
dc.type | Software | en |
tud.project | DFG | GRK2761 | TP_Kupnik_GRK_2761 | de_DE |
tud.project | DFG | GRK 2761 | TP_Beckerle_GRK_2761 | de_DE |
tud.project | DFG | GRK2761 | TP_Seyfarth_GRK_2761 | de_DE |
tud.project | DFG | GRK2761 | TP_Heidelberg_GRK_27 | de_DE |
tud.unit | TUDa | |
tud.history.classification | Version=2020-2024;407-01 Automatisierungstechnik, Regelungssysteme, Robotik, Mechatronik, Cyber Physical Systems | |
tud.history.classification | Version=2020-2024;407-02 Messsysteme | |
tud.history.classification | Version=2020-2024;407-05 Arbeitswissenschaft, Ergonomie, Mensch-Maschine-Systeme | |
tud.history.classification | Version=2020-2024;407-06 Biomedizinische Systemtechnik | |
tud.history.classification | Version=2020-2024;408-01 Elektronische Halbleiter, Bauelemente und Schaltungen, Integrierte Systeme | |