Zur Kurzanzeige

dc.contributor.authorKohler, Michael
dc.contributor.authorWalter, Benjamin
dc.date.accessioned2023-05-27T16:28:00Z
dc.date.available2023-05-27T16:28:00Z
dc.date.issued2023-05-27
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3871
dc.identifier.urihttps://doi.org/10.48328/tudatalib-1160
dc.descriptionThis repository contains the Python code required to reproduce the simulation part of the paper "Analysis of convolutional neural network image classifiers in a rotationally symmetric model" from Kohler and Walter (2023) referenced below. The Python version used is Python 3.9.7. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project number 449102119. The mnist-rot image dataset consisting of the real images from which the classes "four" and "nine" were used can be downloaded from the link given below. The paper by Larochelle et al. (2007) linked below describes the dataset in more detail. The link for the original mnist dataset has also been linked below.de_DE
dc.language.isoende_DE
dc.relationCites;DOI;https://doi.org/10.1109/TIT.2023.3262745
dc.relationReferences;URL;https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits
dc.relationReferences;DOI;https://doi.org/10.1145/1273496.1273556
dc.relationReferences;URL;http://yann.lecun.com/exdb/mnist/
dc.rightsCreative Commons Attribution 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classification3.31-01 Mathematikde_DE
dc.subject.ddc510
dc.titleAnalysis of convolutional neural network image classifiers in a rotationally symmetric model: Implementations of the estimates and links to image data setsde_DE
dc.typeSoftwarede_DE
tud.unitTUDa
tud.history.classificationVersion=2020-2024;312-01 Mathematik


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Der Datensatz erscheint in:

Zur Kurzanzeige

Creative Commons Attribution 4.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Creative Commons Attribution 4.0