dc.contributor.author | Rothmann-Brumm, Pauline | |
dc.date.accessioned | 2023-05-16T11:26:33Z | |
dc.date.accessioned | 2023-06-13T13:58:31Z | |
dc.date.available | 2023-05-16T11:26:33Z | |
dc.date.available | 2023-06-13T13:58:31Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3838 | |
dc.identifier.uri | https://doi.org/10.48328/tudatalib-1147 | |
dc.description | This dataset contains Python code ('code_DeepLearn_ImgClass.zip') for automated classification of gravure printed patterns from the <a href="https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3841">HYPA-p</a> dataset.<br/> <br/>
The developed algorithm performs supervised deep learning of convolutional neural networks (CNNs) on labeled data ('CNN_dataset.zip'), i.e. selected, labeled 'S-subfields' from the HYPA-p dataset. 'CNN_dataset.zip' is a subset from the images in the folder 'labeled_data.zip', which can be created with the provided Python code. PyTorch is used as a deep learning framework. The Python code yields trained CNNs, which can be used for automated classification of unlabeled data from the HYPA-p dataset. <br/>
<br/>
Well-known, pre-trained network architectures like Densenet-161 or MobileNetV2 are used as a starting point for training. Several trained CNNs are included in this submission, see 'trained_CNN_models.zip'. <br/>
<br/>
Further information can be found in the dissertation of Pauline Rothmann-Brumm (2023) and in the provided README-file. | de_DE |
dc.language.iso | en | de_DE |
dc.relation | IsSupplementTo;URL;https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3841 | |
dc.rights | Creative Commons Attribution-NonCommercial 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject | Python code | de_DE |
dc.subject | pattern classification | de_DE |
dc.subject | hydrodynamic pattern formation | de_DE |
dc.subject | deep learning | de_DE |
dc.subject | convolutional neural networks | de_DE |
dc.subject | gravure printing | de_DE |
dc.subject.classification | 4.21-03 Mechanische Verfahrenstechnik | de_DE |
dc.subject.classification | 4.22-03 Strömungsmechanik | de_DE |
dc.subject.classification | 4.31-03 Beschichtungs- und Oberflächentechnik | de_DE |
dc.subject.ddc | 660 | |
dc.subject.ddc | 620 | |
dc.title | Classification of gravure printed patterns using convolutional neural networks (Python code) | de_DE |
dc.type | Text | de_DE |
dc.type | Software | de_DE |
dc.type | Image | de_DE |
dc.type | Model | de_DE |
tud.project | DFG | SFB1194 | TP C01 Dörsam | de_DE |
tud.unit | TUDa | |
tud.history.classification | Version=2020-2024;403-03 Mechanische Verfahrenstechnik | |
tud.history.classification | Version=2020-2024;404-03 Strömungsmechanik | |
tud.history.classification | Version=2020-2024;405-03 Beschichtungs- und Oberflächentechnik | |