Zur Kurzanzeige

dc.contributor.authorRothmann-Brumm, Pauline
dc.date.accessioned2023-05-16T11:26:33Z
dc.date.accessioned2023-06-13T13:58:31Z
dc.date.available2023-05-16T11:26:33Z
dc.date.available2023-06-13T13:58:31Z
dc.date.issued2023
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3838
dc.identifier.urihttps://doi.org/10.48328/tudatalib-1147
dc.descriptionThis dataset contains Python code ('code_DeepLearn_ImgClass.zip') for automated classification of gravure printed patterns from the <a href="https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3841">HYPA-p</a> dataset.<br/> <br/> The developed algorithm performs supervised deep learning of convolutional neural networks (CNNs) on labeled data ('CNN_dataset.zip'), i.e. selected, labeled 'S-subfields' from the HYPA-p dataset. 'CNN_dataset.zip' is a subset from the images in the folder 'labeled_data.zip', which can be created with the provided Python code. PyTorch is used as a deep learning framework. The Python code yields trained CNNs, which can be used for automated classification of unlabeled data from the HYPA-p dataset. <br/> <br/> Well-known, pre-trained network architectures like Densenet-161 or MobileNetV2 are used as a starting point for training. Several trained CNNs are included in this submission, see 'trained_CNN_models.zip'. <br/> <br/> Further information can be found in the dissertation of Pauline Rothmann-Brumm (2023) and in the provided README-file.de_DE
dc.language.isoende_DE
dc.relationIsSupplementTo;URL;https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3841
dc.rightsCreative Commons Attribution-NonCommercial 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectPython codede_DE
dc.subjectpattern classificationde_DE
dc.subjecthydrodynamic pattern formationde_DE
dc.subjectdeep learningde_DE
dc.subjectconvolutional neural networksde_DE
dc.subjectgravure printingde_DE
dc.subject.classification4.21-03 Mechanische Verfahrenstechnikde_DE
dc.subject.classification4.22-03 Strömungsmechanikde_DE
dc.subject.classification4.31-03 Beschichtungs- und Oberflächentechnikde_DE
dc.subject.ddc660
dc.subject.ddc620
dc.titleClassification of gravure printed patterns using convolutional neural networks (Python code)de_DE
dc.typeTextde_DE
dc.typeSoftwarede_DE
dc.typeImagede_DE
dc.typeModelde_DE
tud.projectDFG | SFB1194 | TP C01 Dörsamde_DE
tud.unitTUDa
tud.history.classificationVersion=2020-2024;403-03 Mechanische Verfahrenstechnik
tud.history.classificationVersion=2020-2024;404-03 Strömungsmechanik
tud.history.classificationVersion=2020-2024;405-03 Beschichtungs- und Oberflächentechnik


Dateien zu dieser Ressource

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Der Datensatz erscheint in:

Zur Kurzanzeige

Creative Commons Attribution-NonCommercial 4.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Creative Commons Attribution-NonCommercial 4.0