Zur Kurzanzeige

dc.contributor.authorBrumm, Pauline
dc.contributor.authorCiotta, Nicola
dc.contributor.authorSauer, Hans Martin
dc.contributor.authorBlaeser, Andreas
dc.contributor.authorDoersam, Edgar
dc.date.accessioned2022-08-26T23:12:57Z
dc.date.available2022-08-26T23:12:57Z
dc.date.issued2022
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3552
dc.identifier.urihttps://doi.org/10.48328/tudatalib-938
dc.descriptionThe files that are made available here are all the key components that are needed to recreate the automated classification of high speed videos of the gravure printing fluid splitting process using deep learning. The purpose of this was to create a tool that can distinguish the distinct regimes of pattern formation. This could ultimately lead to a better understanding of the fluid splitting process and a complete map of pattern formation regimes. <br /> <br /> The zip-file "Python_code" contains the Python script that was used to extract PNG frames from a video dataset created by Julian Schäfer in 2019 (<a href="https://doi.org/10.25534/tudatalib-191.2">DOI: 10.25534/tudatalib-191.2</a>). The result of this frame extraction is provided as "Frame_dataset_PNG_8_bit.zip". Additionally, "Python_code.zip" contains the scripts for training the deep learning models and using them for inference. All trained models for the associated publication can be found in the zip-file "models".<br /> <br /> Further information can be found in the README-file and in the publication:<br /> Pauline Brumm, Nicola Ciotta, Hans Martin Sauer, Andreas Blaeser, Edgar Dörsam, 2022. Deep learning study of induced stochastic pattern formation in the gravure printing fluid splitting process, Journal of Coatings Technology and Research. <a href="https://doi.org/10.1007/s11998-022-00687-x">DOI: 10.1007/s11998-022-00687-x</a>de_DE
dc.language.isoende_DE
dc.relationIsCitedBy;DOI;10.1007/s11998-022-00687-x
dc.relationCites;DOI;10.25534/tudatalib-191.2
dc.relationCites;ISBN;978-1-83864-483-3
dc.relationCites;URL;https://github.com/PacktPublishing/PyTorch-Computer-Vision-Cookbook
dc.relationCites;URL;https://github.com/ladisk/pyMRAW
dc.rightsCreative Commons Attribution-NonCommercial 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectgravure printingde_DE
dc.subjectfluid splittingde_DE
dc.subjectPython codede_DE
dc.subjectdeep learningde_DE
dc.subjectvideo classificationde_DE
dc.subjectpattern formationde_DE
dc.subjectmachine learningde_DE
dc.subjectviscous fingeringde_DE
dc.subject.classification4.21-03 Mechanische Verfahrenstechnikde_DE
dc.subject.classification4.22-03 Strömungsmechanikde_DE
dc.subject.classification4.31-03 Beschichtungs- und Oberflächentechnikde_DE
dc.subject.ddc660
dc.subject.ddc620
dc.titlePython code: Classification of in situ high speed videos of the gravure printing fluid splitting process using deep learningde_DE
dc.typeTextde_DE
dc.typeSoftwarede_DE
dc.typeImagede_DE
dc.typeModelde_DE
tud.projectDFG | SFB1194 | TP C01 Dörsamde_DE
tud.unitTUDa
tud.history.classificationVersion=2020-2024;403-03 Mechanische Verfahrenstechnik
tud.history.classificationVersion=2020-2024;404-03 Strömungsmechanik
tud.history.classificationVersion=2020-2024;405-03 Beschichtungs- und Oberflächentechnik


Dateien zu dieser Ressource

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Der Datensatz erscheint in:

Zur Kurzanzeige

Creative Commons Attribution-NonCommercial 4.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Creative Commons Attribution-NonCommercial 4.0