Zur Kurzanzeige

dc.contributor.advisor
dc.contributor.authorAraslanov, Nikita
dc.contributor.authorRoth, Stefan
dc.date.accessioned2021-12-22T11:09:34Z
dc.date.available2021-12-22T11:09:34Z
dc.date.issued2020-06
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3367
dc.descriptionRecent years have seen a rapid growth in new approaches improving the accuracy of semantic segmentation in a weakly supervised setting, i.e. with only image-level labels available for training. However, this has come at the cost of increased model complexity and sophisticated multi-stage training procedures. This is in contrast to earlier work that used only a single stage − training one segmentation network on image labels − which was abandoned due to inferior segmentation accuracy. In this work, we first define three desirable properties of a weakly supervised method: local consistency, semantic fidelity, and completeness. Using these properties as guidelines, we then develop a segmentation-based network model and a self-supervised training scheme to train for semantic masks from image-level annotations in a single stage. We show that despite its simplicity, our method achieves results that are competitive with significantly more complex pipelines, substantially outperforming earlier single-stage methods.de_DE
dc.language.isoende_DE
dc.relationIsDescribedBy;arXiv;2005.08104
dc.rightsApache License 2.0
dc.rights.urihttps://www.apache.org/licenses/LICENSE-2.0
dc.subjectweak supervisionde_DE
dc.subjectsemantic segmentationde_DE
dc.subject.classification4.43-04 Künstliche Intelligenz und Maschinelle Lernverfahrende_DE
dc.subject.classification4.43-05 Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
dc.subject.ddc004
dc.titleSingle-stage Semantic Segmentation from Image Labelsde_DE
dc.typeSoftwarede_DE
tud.unitTUDa
tud.history.classificationVersion=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung


Dateien zu dieser Ressource

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Der Datensatz erscheint in:

Zur Kurzanzeige

Apache License 2.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Apache License 2.0