Show simple item record

dc.contributor.authorSchiller, Benjamin
dc.contributor.authorDaxenberger, Johannes
dc.contributor.authorGurevych, Iryna
dc.date.accessioned2021-07-03T22:09:32Z
dc.date.available2021-07-03T22:09:32Z
dc.date.issued2019
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2848
dc.descriptionThis collection includes model weights (BERT-based), fine-tuned in a multi-task setting on 10 heterogeneous stance detection datasets. For more information, please refer to the paper and the GitHub repository linked in the paper. DISCLAIMER: The user acknowledges and agrees that the data is provided on an “as­-is” basis and that the licensor makes no representations or warranties of any kind.en_US
dc.language.isoenen_US
dc.relationIsCitedBy;arXiv;2001.01565
dc.relationIsCitedBy;DOI;10.1007/s13218-021-00714-w
dc.rightsin Copyright
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subjectStance Detectionen_US
dc.subjectBenchmarken_US
dc.subjectModel weightsen_US
dc.subject.classification409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierungen_US
dc.subject.ddc004
dc.titleFine-tuned model weights for Stance Detection Benchmark Systemen_US
dc.typeModelen_US
tud.projectPTJ | 03VP02540 | ArgumenTexten_US
tud.unitTUDa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

in Copyright
Except where otherwise noted, this item's license is described as in Copyright