dc.contributor.author | Schiller, Benjamin | |
dc.contributor.author | Daxenberger, Johannes | |
dc.contributor.author | Gurevych, Iryna | |
dc.date.accessioned | 2021-07-03T22:09:32Z | |
dc.date.available | 2021-07-03T22:09:32Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2848 | |
dc.description | This collection includes model weights (BERT-based), fine-tuned in a multi-task setting on 10 heterogeneous stance detection datasets. For more information, please refer to the paper and the GitHub repository linked in the paper. DISCLAIMER: The user acknowledges and agrees that the data is provided on an “as-is” basis and that the licensor makes no representations or warranties of any kind. | en_US |
dc.language.iso | en | en_US |
dc.relation | IsCitedBy;arXiv;2001.01565 | |
dc.relation | IsCitedBy;DOI;10.1007/s13218-021-00714-w | |
dc.rights | in Copyright | |
dc.rights.uri | https://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Stance Detection | en_US |
dc.subject | Benchmark | en_US |
dc.subject | Model weights | en_US |
dc.subject.classification | 4.43-04 Künstliche Intelligenz und Maschinelle Lernverfahren | en_US |
dc.subject.classification | 4.43-05 Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing | |
dc.subject.ddc | 004 | |
dc.title | Fine-tuned model weights for Stance Detection Benchmark System | en_US |
dc.type | Model | en_US |
tud.project | PTJ | 03VP02540 | ArgumenText | en_US |
tud.unit | TUDa | |
tud.history.classification | Version=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung | |