dc.contributor.author | Winter, Hanno | |
dc.date.accessioned | 2020-11-27T07:42:49Z | |
dc.date.available | 2020-11-27T07:42:49Z | |
dc.date.issued | 2020-12-10 | |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2530 | |
dc.identifier.uri | https://doi.org/10.25534/tudatalib-360 | |
dc.description | <p><strong>Key facts</strong></p>
<ul>
<li><strong>Fields of application:</strong><br /> railway positioning, sensor fusion, sensor models</li>
<li><strong>Available data:</strong><br /> 2x GNSS, 1x IMU</li>
<li><strong>Rail-track characteristics:</strong><br /> ≈120 km on conventional and secondary line (tight curves, steep slopes, forested embankment)</li>
<li><strong>Available reference data:</strong><br /> Open GNSS/IMU EKF-fusion solution (loosely coupled), high precision 3D track-map</li>
<li><strong>Structure:</strong><br /> This data set follows the data sharing principles of the LRT (localization reference train) initiative that are available at <a href="https://lrt-initiative.org/2020_05_28_lrtdatasetguidelines_v1_2/">lrt-initiative.org</a>.</li>
</ul>
<p><strong>About</strong></p>
<p>This data set can be used for rail vehicle positioning experiments. It contains measurements of an 6-DOF IMU and two GNSS receivers. The senors were mounted on a regular rail vehicle during a trip from Chemnitz (Germany, Saxony) to Schwarzenberg (Germany, Saxony) and back.</p>
<p>The recorded data have been pre-processed to have common time and coordinate frames. Furthermore, a simple loosely coupled GNSS/IMU positioning solution is provided which can be used as a baseline for more advanced fusion approaches.</p>
<p>All MATLAB scripts used to process the raw data and to calculate the GNSS/IMU positioning solution are provided within the data set. </p>
<p>The data can be used as a starting point for own work. Special features of this data set are its covered terrain (tight curves, steep slopes, forest embankment), its test-track (often used as test-track for new railway equipment) and the availability of a high precision 3D track-map.</p>
<p><strong>Similar data sets</strong></p>
<ul>
<li><a href="https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2292.2" target="_blank">https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2292.2</a></li>
<li><a href="https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2529" target="_blank">https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2529</a></li>
</ul>
<p><strong>Scripts</strong></p>
<ul>
<li><a href="https://github.com/tud-rmr/railway_dataset_c_20181024" target="_blank">https://github.com/tud-rmr/railway_dataset_c_20181024</a></li>
</ul>
<style type="text/css">
<!--
.rvpds_tab { margin-left: 40px; }
-->
</style>
<p><strong>BibTex</strong></p>
<p>@Misc{WinterRailDataSetOctober2018,<br/>
<span class="rvpds_tab">title = {Rail Vehicle Positioning Data Set: Lucy, October 2018},</span><br/>
<span class="rvpds_tab">author = {Winter, Hanno},</span><br/>
<span class="rvpds_tab">doi = {10.25534/tudatalib-360},</span><br/>
<span class="rvpds_tab">publisher = {Technische Universität Darmstadt},</span><br/>
<span class="rvpds_tab">year = {2020},</span><br/>
}
</p> | en_US |
dc.language.iso | en | en_US |
dc.rights | Creative Commons Attribution 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Railway | en_US |
dc.subject | Positioning | en_US |
dc.subject | Data Set | en_US |
dc.subject | Train | en_US |
dc.subject | Localization | en_US |
dc.subject | GNSS | en_US |
dc.subject | IMU | en_US |
dc.subject | Track Map | en_US |
dc.subject | Sensor Fusion | en_US |
dc.subject.classification | 4.41-04 Verkehrs- und Transportsysteme, Intelligenter und automatisierter Verkehr | |
dc.subject.ddc | 380 | |
dc.title | Rail Vehicle Positioning Data Set: Lucy, October 2018 | en_US |
dc.type | Dataset | en_US |
dc.type | Software | en_US |
dc.description.version | initial version | en_US |
tud.history.classification | Version=2016-2020;407-04 Verkehrs- und Transportsysteme, Logistik, Intelligenter und automatisierter Verkehr; | |