dc.contributor.author | Luthardt, Stefan | |
dc.contributor.author | Ziegler, Christoph | |
dc.date.accessioned | 2020-10-26T09:24:21Z | |
dc.date.available | 2020-10-26T09:24:21Z | |
dc.date.issued | 2019-10-27 | |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2501 | |
dc.description | <style type="text/css">
<!--
.oof_tab { margin-left: 40px; }
#oof_list ul {
list-style-type: disc;
list-style-position: outside;
}
#oof_list li {
margin-left: 20px;
}
-->
</style>
<p>This dataset contains 282 visual feature tracks. A visual feature track is a sequence of feature observations of the same real 3D-landmark in consecutive image frames. These tracks are the output of a classical feature matching system, e.g. a Visual Odometry system or a system with Bundle Adjustment.</p>
<p>The feature tracks were recorded at three different days in spring 2017 in a suburban area. The dataset provides each track as a sequence of square image patches which contain the surrounding of the observed feature. Since a stereo camera setup was used, there are two patches per feature observation. In total the dataset contains 3162 of these image patches.</p>
<p>The dataset was created to investigate the task of long-term feature track matching, i.e. finding all tracks that belong to the same landmark. Therefore, the dataset also contains “ground truth” labels which of the tracks from the different days belong together. Furthermore, the distance to the feature is given for each observation.</p>
<p>Like every real-world data, this dataset is not perfect. If you identify a major bug, please write an e-mail to <a class="link email" itemprop="email" href="mailto:christoph.ziegler@rmr.tu-darmstadt.de" title="mail to: christoph.ziegler@rmr.tu-darmstadt.de">christoph.ziegler@rmr.tu-…</a> with the track-ID and a description of the problem.</p>
<p >If you use this dataset in your research please cite the associated publication:</p>
<p><em>Stefan Luthardt, Christoph Ziegler, Volker Willert, and Jürgen Adamy: “How to Match Tracks of Visual Features for Automotive Long-Term SLAM”, IEEE 22nd International Conference on Intelligent Transportation Systems (ITSC), 2019.</em></p>
<p><em><a href="https://tuprints.ulb.tu-darmstadt.de/9108/1/Luthardt_ITSC_2019_FeatureTracks.pdf" target="_blank">Download the Paper</a></em></p>
<p>This paper also provides future explanations of the track matching task and describes possible approaches to solve this task.</p>
<p><strong>BibTex:</strong></p>
<p>@inproceedings{Luthardt.2019,<br/>
<span class="oof_tab">author = {Luthardt, Stefan and Ziegler, Christoph and Willert, Volker and Adamy, Jürgen},</span><br/>
<span class="oof_tab">title = {How to Match Tracks of Visual Features for Automotive Long-Term-{SLAM}},</span><br/>
<span class="oof_tab">booktitle = {IEEE 22nd International Conference on Intelligent Transportation Systems (ITSC)},</span><br/>
<span class="oof_tab">year = {2019}</span><br/>
}</p>
<p>Paper describing the associated SLAM algorithm:<br/><em><a href="http://tuprints.ulb.tu-darmstadt.de/8357/1/Luthardt_ITSC_2018_LLama.pdf" target="_blank">LLama-SLAM: Learning High-Quality Visual Landmarks for Long-Term Mapping and Localization.</a></em></p> | en_US |
dc.language.iso | en | en_US |
dc.relation | IsSupplementTo;DOI;10.1109/ITSC.2019.8916895 | |
dc.rights | Creative Commons Attribution 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Visualization | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | optimization | en_US |
dc.subject | Simultaneous localization and mapping | en_US |
dc.subject | Cameras | en_US |
dc.subject | Robustness | en_US |
dc.subject | image matching | en_US |
dc.subject | mobile robots | en_US |
dc.subject | pose estimation | en_US |
dc.subject | robot vision | en_US |
dc.subject | SLAM | en_US |
dc.subject | automotive long-term SLAM | en_US |
dc.subject | visual features | en_US |
dc.subject | autonomous driving functions | en_US |
dc.subject | LLama-SLAM | en_US |
dc.subject | consecutive image frames | en_US |
dc.subject | feature track | en_US |
dc.subject | visual feature tracks | en_US |
dc.subject.classification | 4.43-04 Künstliche Intelligenz und Maschinelle Lernverfahren | |
dc.subject.classification | 4.41-04 Verkehrs- und Transportsysteme, Intelligenter und automatisierter Verkehr | |
dc.subject.classification | 4.43-05 Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing | |
dc.subject.ddc | 380 | |
dc.subject.ddc | 004 | |
dc.title | Visual Feature Track Dataset | en_US |
dc.type | Dataset | en_US |
dc.type | Text | en_US |
dc.type | Software | en_US |
dc.type | Image | en_US |
tud.history.classification | Version=2016-2020;407-04 Verkehrs- und Transportsysteme, Logistik, Intelligenter und automatisierter Verkehr;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung; | |