Show simple item record

dc.contributor.authorSchwehr, Julian
dc.contributor.authorKnaust, Moritz
dc.description<style type="text/css"> <!-- .oof_tab { margin-left: 40px; } #oof_list ul { list-style-type: disc; list-style-position: outside; } #oof_list li { margin-left: 20px; } --> </style> <p>This dataset was created in order to evaluate different models for detecting the driver's current object of fixation, i.e. finding the object the driver is looking at, when using a remote gaze tracking system. Determining the tracking quality of the remote gaze tracking system does not assess the advantages and drawbacks of specific algorithmic fusion approaches. Furthermore, when estimating the driver's point of regard (PoR) and the gaze target, all algorithmic approaches share the problem that there exists no ground truth on where the driver is truly looking.</p> <p>For this purpose, a wearable gaze tracking device was operated in parallel to the vehicle-integrated head-eye-tracking system, serving as source for reference data of the driver's visual attention.</p> <p>The dataset contains:</p> <p></p> <div id="oof_list"> <ul> <li>remote gaze direction measurements, stereo image recordings, and object lists of several artificial and real world scenarios as recorded by the PRORETA 4 test vehicle,</li> <li>images and point of regard as measured by the wearable eye tracking device,</li> <li>some sequences are labeled as outlined in the associated paper,</li> <li>raw data of the real world drive (~5min),</li> <li>more information in the Description.txt of the dataset.</li> </ul> </div> <p >If you use this dataset in your research please cite the associated publication:</p> <p><em>Julian Schwehr, Moritz Knaust, and Volker Willert: “How to Evaluate Object-of-Fixation Detection”, IEEE Intelligent Vehicles Symposium (IV), 2019.</em></p> <p><em><a href="" target="_blank">Read the Paper at IEEE Xplore</a></em></p> <p><strong>BibTex:</strong></p> <p>@inproceedings{Schwehr.2019,<br/> <span class="oof_tab">author = {Schwehr, Julian and Knaust, Moritz and Willert, Volker},</span><br/> <span class="oof_tab">title = {How to Evaluate Object-of-Fixation Detection},</span><br/> <span class="oof_tab">booktitle = {IEEE Intelligent Vehicles Symposium (IV)},</span><br/> <span class="oof_tab">year = {2019}</span><br/> }</p> <p>The mentioned gaze target tracking model is introduced in:<br/><em><a href="" target="_blank">Multi-Hypothesis Multi-Model Driver's Gaze Target Tracking.</a></em></p>en_US
dc.rightsCreative Commons Attribution 4.0
dc.subjectobject-of-fixation detectionen_US
dc.subjectdriver monitoringen_US
dc.subjectwearable head eye trackersen_US
dc.subjecteye tracking glassesen_US
dc.subjectseries surround sensorsen_US
dc.subjectremote eye trackeren_US
dc.subjectwearable deviceen_US
dc.subjectadvanced driver assistance systemsen_US
dc.subjectremote gaze tracking systemsen_US
dc.subjectinside-outside looking systemsen_US
dc.subjectcalibration errorsen_US
dc.subjectobject detectionen_US
dc.subjectgaze trackingen_US
dc.subjectdriver information systemsen_US
dc.subject.classification409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung
dc.subject.classification407-04 Verkehrs- und Transportsysteme, Intelligenter und automatisierter Verkehr
dc.titleObject of Fixation Dataseten_US
dc.description.versionInitial versionen_US
tud.history.classificationVersion=2016-2020;407-04 Verkehrs- und Transportsysteme, Logistik, Intelligenter und automatisierter Verkehr;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung;

Files in this item


This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0