Zur Kurzanzeige

dc.contributor.authorFlekova, Lucie
dc.contributor.authorRuppert, Eugen
dc.contributor.authorPreotiuc-Pietro, Daniel
dc.date.accessioned2020-07-25T09:14:02Z
dc.date.available2020-07-25T09:14:02Z
dc.date.issued2015
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2450
dc.descriptionSentiment prediction from Twitter is of the utmost interest for research and commercial organizations. Systems are usually using lexicons, where each word is positive or negative. However, word lexicons suffer from ambiguities at a contextual level: the word dark is positive in dark chocolate and negative in dark soul, the word lost is positive with weight and so on. We introduce a method which helps to identify frequent contexts in which a word switches polarity, and to reveal which words often appear in both positive and negative contexts. We show that our method matches human perception of polarity and demonstrate improvements in automated sentiment classification. Our method also helps to assess the suitability to use an existing lexicon to a new platform (e.g. Twitter).en_US
dc.language.isoenen_US
dc.relationIsSupplementTo;DOI;10.18653/v1/W15-2911
dc.rightsCreative Commons Attribution 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classification4.43-04 Künstliche Intelligenz und Maschinelle Lernverfahrenen_US
dc.subject.classification4.43-05 Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
dc.subject.ddc004
dc.titleInverted Polarity Bigram Lexiconsen_US
dc.typeDataseten_US
tud.projectBund/BMBF | 01IS12054 | SC_Flekovaen_US
tud.history.classificationVersion=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Der Datensatz erscheint in:

Zur Kurzanzeige

Creative Commons Attribution 4.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Creative Commons Attribution 4.0