Show simple item record

dc.contributor.authorSchiller, Benjamin
dc.contributor.authorDaxenberger, Johannes
dc.contributor.authorGurevych, Iryna
dc.date.accessioned2020-05-07T15:23:13Z
dc.date.available2020-05-07T15:23:13Z
dc.date.issued2020-05
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2328
dc.descriptionThis collection includes trained weights for the controlled argument generation models which were fine-tuned on Common-Crawl and Reddit-Comments dumps. For more information, please refer to the paper and the GitHub repository linked in the paper. DISCLAIMER: All weights provided as downloads may be used for research purposes only. The user acknowledges and agrees that the data is provided on an “as­-is” basis and that the licensor makes no representations or warranties of any kind.en_US
dc.language.isoenen_US
dc.relationIsCitedBy;arXiv;2005.00084
dc.rightsIn Copyright
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subjectargument generationen_US
dc.subjectcontrolled argument generationen_US
dc.subjectaspect detectionen_US
dc.titleWeights for Aspect-Controlled Neural Argument Generationen_US
dc.typeModelen_US
dc.description.version1.0en_US
tud.projectPTJ | 03VP02540 | ArgumenTexten_US
tud.projectDFG | GU798/25-1 | Offenes Argument-Minen_US
tud.unitTUDa


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright