Zur Kurzanzeige

dc.contributor.authorSchiller, Benjamin
dc.contributor.authorDaxenberger, Johannes
dc.contributor.authorGurevych, Iryna
dc.date.accessioned2020-05-07T15:23:13Z
dc.date.available2020-05-07T15:23:13Z
dc.date.issued2020-05
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2328
dc.descriptionThis collection includes trained weights for the controlled argument generation models which were fine-tuned on Common-Crawl and Reddit-Comments dumps. For more information, please refer to the paper and the GitHub repository linked in the paper. DISCLAIMER: All weights provided as downloads may be used for research purposes only. The user acknowledges and agrees that the data is provided on an “as­-is” basis and that the licensor makes no representations or warranties of any kind.en_US
dc.language.isoenen_US
dc.relationIsCitedBy;arXiv;2005.00084
dc.rightsIn Copyright
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subjectargument generationen_US
dc.subjectcontrolled argument generationen_US
dc.subjectaspect detectionen_US
dc.titleWeights for Aspect-Controlled Neural Argument Generationen_US
dc.typeModelen_US
dc.description.version1.0en_US
tud.projectPTJ | 03VP02540 | ArgumenTexten_US
tud.projectDFG | GU798/25-1 | Offenes Argument-Minen_US
tud.unitTUDa


Dateien zu dieser Ressource

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Der Datensatz erscheint in:

Zur Kurzanzeige

In Copyright
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: In Copyright