Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains
Beschreibung
Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is particularly hard for both humans and machines: the segmentation and classification of epistemic activities in diagnostic reasoning texts. We create and publish a new dataset covering two domains and carefully analyse the suggested annotations. We find that suggestions have positive effects on annotation speed and performance, while not introducing noteworthy biases. Envisioning suggestion models that improve with newly annotated texts, we contrast methods for continuous model adjustment and suggest the most effective setup for suggestions in future expert tasks.
Verknüpfungen mit TUbiblio-Einträgen
- Schulz, Claudia ; Meyer, Christian M. ; Kiesewetter, Jan ; Sailer, Michael ; Bauer, Elisabeth ; Fischer, Martin R. ; Fischer, Frank ; Gurevych, Iryna (2019)Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains. The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Florence, Italy (28.07.2019-02.08.2019)Konferenzveröffentlichung, Bibliographie[Verknüpfung]
- Schulz, Claudia ; Meyer, Christian M. ; Gurevych, Iryna (2019)Challenges in the Automatic Analysis of Students’ Diagnostic Reasoning. 33rd AAAI Conference on Artificial Intelligence (AAAI-19). Honolulu, USA (27.01.2019 - 01.02.20219)doi: 10.1609/aaai.v33i01.33016974 Konferenzveröffentlichung, Bibliographie[Verknüpfung]
Sammlungen
Die folgenden Lizenzbestimmungen sind mit dieser Ressource verbunden: