
Towards physics-based deep learning in OpenFOAM:
Combining OpenFOAM with the PyTorch C++ API

Tomislav Maric (TU Darmstadt), Andre Weiner (TU Braunschweig)
17th OpenFOAM Workshop, 11.07.2022, Cambridge University

∂tψ

∇ · (vψ)
∇ψ

∇ · (∇ψ)

R(x, y, z, t) = ∂tψ +∇ · (vψ)−∇ · (λ∇ψ)− S(ψ)

x
y

z

t

ψ

LkLk−1

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 1

Deep Learning Overview

Physics-Based Deep Learning Overview

Combining PyTorch C++ API and OpenFOAM for Physics-Informed Neural Networks

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 2

Deep Learning
Neural Network - NN

x
y
z
t

ψ

LkLk−1

Neural Network (NN) has an input layer (e.g. (x, y, z, t)),
D− 1 hidden layers, and a (e.g. scalar) output layer ψ.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 3

Deep Learning
Hidden Layers

LkLk−1
j i

lki

wk
ij

Hidden layer Lk is computed from the previous layer

lki =
NLk−1∑
j=1

wk
ijl

k−1
j + bki (1)

Einstein’s notation (repeated index ≡ dot product)

lki = wk
ijl

k−1
j + bki (2)

Matrix-vector product
Lk = wk · Lk−1 + bk (3)

wk is a NLk × NLk−1 matrix.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 4

Deep Learning
Activation function, composition

Adding activation functions to the layers results in the final NN, as a composition of functions

ψnn
θ (u) = wD · LD−1 + bD = wD · σ(wD−1 · LD−2 + bD−1) + bD

= wD · σ(wD−1 · σ(wD−2 · σ(. . . σ(w1 · u+ b1) . . .) + bD−2) + bD−1) + bD
(4)

u = (x, y, z, t) in our example.
θ are all the weights and biases, θ = {wk

ij, bki }, k ∈ [1,D], j ∈ [1,NLk−1], i ∈ [1,NLk].
When approximating functions, the last layer is often "linear".

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 5

Deep Learning
Approximation error

x
y
z
t

ψ

LkLk−1
A set of points {up}p∈P and their data {ψp}p∈P can be used to
define an error of ψnn

θ (up), e.g.

eMSE(θ) =
1
Np

Np∑
p=1

(ψnn
θ (up)− ψp)

2. (5)

The network "learns" some θM that minimize eMSE.

θM = argmin
θ

eMSE(θ) (6)

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 6

Deep Learning
Approximation error minimization = learning weights and biases

x
y
z
t

ψ

LkLk−1 θM = argminθ eMSE(θ) requires minθ eMSE(θ)

∂θieMSE(θ) → 0
Np∑
p=1

(ψnn
θm(up)− ψp)∂θmi ψ

nn
θm(up)

!
= 0

(7)

An approximation is inexact so generally
ψnn
θm(up)− ψp ̸= 0, and we strive for ∂θmi ψ

nn
θm(up) → 0.

Why m? In the beginning θm=1 is somehow (randomly)
initialized and we iteratively (m) improve it to satisfy
eq. (7).

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 7

Deep Learning
Gradient descent

Np∑
p=1

(ψnn
θm(up)− ψp)∂θmi ψ

nn
θm(up)

!
= 0

Imagine we somehow know ∂θmi ψ
nn
θm(up) (∇θmψ

nn
θm(up) in vector notation), we can then use

gradient descent
θm+1(up) = θm(up)− λm∇θmψ

nn
θm(up) (8)

ensuring eMSE(θ
m+1) ≤ eMSE(θ

m) (hopefully ∥∇θm+1ψnn
θm(up)∥2 ≤ ∥∇θmψ

nn
θm(up)∥2), and adapting

λ at m to tune the step size.
New parameters are set as 1

Np

∑Np
p=1 θ

m+1(up) (average), or by batch-average, or using
radom-subsets of data points.
Real-world algorithms adapt λm differently and are more complex.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 8

Deep Learning
Gradient evaluation

x 1

1

1

2

3

4

5

2

6

3

4

y

z

t

ψ

L1
u

L2
If

ψnn
θ (up) = w2 · σ(w1 · u+ b1) + b2

what is ∂w1
13
ψnn
θ (up)?

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 9

Deep Learning
Gradient evaluation

x 1

1

1

2

3

4

5

2

6

3

4

y

z

t

ψ

L1
u

L2

If
ψnn
θ (up) = w2 · σ(w1 · u+ b1) + b2

what is ∂w1
13
ψnn
θ (up)?

∂w1
13
ψnn
θ (up) = w2 · σ′(w1 · u+ b1)u3

Imagine writing this down for every wk
ij, bki for a deep NN.

To make things worse, the number of layers and nodes
change during "hyperparameter tuning".

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 9

Deep Learning
Gradient evaluation - Finite Differences (FD) I

x 1

1

1

2

3

4

5

2

6

3

4

y

z

t

ψ

L1
u

L2

Finite Differences (FD) generalize to arbitrary NN
architectures, but don’t work, because of computational
costs.

wk is a NLk × NLk−1 matrix.
bk is a NLk vector.
For ∂θmi ψ

nn
θm(up), we need

Nθ :=
D∑

i=2

NLk(1+ NLk−1) (9)

finite differences, one for each weight and bias.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 10

Deep Learning
Gradient evaluation - Finite Differences (FD) II

x 1

1

1
2
3
4
5

2

6

3

4

y

z

t

ψ

L1
u

L2

Finite Differences (FD) generalize to arbitrary NN architectures, but
don’t work, because of Floating-Point (FP) cancellation errors.

As we converge towards θM , forward passes get very close to
each other |ψnn

θm(up)− ψnn
θm−1(up)| → 0.

The computer has limited precision, so as weights θmi , θ
m−1
i get

close to each other
theta_i_m = 1.1234567891234569|33333333333
theta_i_m_1 = 1.1234567891234102|22222222222

their difference
theta_i_m - theta_i_m_1 = 0.0000000000000467|11111111111

and, therefore, |∂FDθmi ψ
nn
θm(up)|, go to zero quicker than they should, so

NN training stalls.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 11

Deep Learning
Gradient evaluation - Finite Differences (FD) III

Some Finite Differences

f ′fwd =
f(x + h)− f(x)

h
+ O(h) (10)

f ′cds =
f(x + h)− f(x − h)

2h
+ O(h2) (11)

Important: Finite Differences are inexact, order-of accuracy O(hp).
A great book on FPA is Overton [2001]

Once h <= 0.5ulp(x) with nearest rounding, full cancellation occurs.
ulp - units in the last place, ulp(x) = 2−522E, E is the exponent.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 12

Deep Learning
Gradient evaluation - Finite Differences (FD) IV

10−16 10−13 10−10 10−7 10−4 10−1

h

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
er

ro
r

f(x) = cos(x), x = 0.3

Efwdn
Ecdsn

Relative derivative (gradient) error

efwd,cdsn =
|f ′fwd,cds − f ′exact|

|f ′exact|
. (12)

h → 0, efwd,cdsn → 1: Floating-Point
cancellation errors prevent asymptotic
convergence of Finite Differences.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 13

Deep Learning
Gradient evaluation - Symbolic Calculation

Instead of manually evaluating ∂θmi ψ
nn
θm(up), let some software (like Sympy) write down

closed-form expressions for you using Symbolic Calculation.
Doesn’t work: huge closed-form expressions are necessary, causing huge memory and CPU
overheads.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 14

https://www.sympy.org/en/index.html

Deep Learning
Reverse-mode Automatic Differentiation (AD) - Back propagation - autograd I

Notation: ∂sf = ∂f(s)
∂s

f(x, y, z) = (x + y)z = f(v(u(x, y), z))

u = x + y

v = uz

∂xu = 1

∂yu = 1
∂uv = z

∂zv = 1

+

·

x

y

z

Reverse-mode Automatic Differentiation (AD, details in
Griewank and Walther [2008]) is the basis for evaluating
derivatives for NN training (backpropagation).

Mathematic expressions are modeled with an
directed acyclic graph (DAG).
Intermediate results stored in variables.
The graph’s edges can evaluate known partial
derivatives w.r.t. intermdediate variables.
Chain rule is used to compute the partial derivative
along the graph:

∂xf = ∂vf(v)∂uv(u, z)∂xu(x, y) = 1z1 = z (13)

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 15

https://en.wikipedia.org/wiki/Chain_rule

Deep Learning
Reverse-mode Automatic Differentiation (AD) - Back propagation - autograd II

Notation: ∂sf = ∂f(s)
∂s

f(x, y, z) = (x + y)z = f(v(u(x, y), z))

u = x + y

v = uz

∂xu = 1

∂yu = 1
∂uv = z

∂zv = 1

+

·

x

y

z

Exact: no Finite Difference-induced Floating-Point
cancellation errors, no discretization errors.
Automatic for arbitrary NN architecture.
Computationally more efficient than Symbolic
Calculations or Finite Differences.
Responsible for "reviving" Deep Learning.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 16

Deep Learning
Deep Learning isn’t a "silver bullet"

Math proves θM exists and NNs are universal function approximators, but not how to find it.
Finding θM depends on λ, the NN architecture, and the activation function - hyperparameters.
Hyperparameters are "free" parameters tuned by

graduate/Ph.D. students (student descent algorithm)
Grid Search, Monte Carlo, Bayesian Optimization: keyword AutoML.

Once hyperparameters are "tuned", some θM is found with a minimal eMSE in the best case
over a response-surface that hopefully models the hyperparameter space well - there is no
guarantee θM is globally-optimal in terms of data or hyperparameters.
Training takes a lot of computational time and resources.
As soon as a form of Stochastic Gradient Descent is used (large data), running the training
twice with the same hyperparameters and input data will give a different output from the NN.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 17

Deep Learning
Summary

NNs are function compositions, composing a matrix/vector product, an addition, and a
nonlinear (activation) function σ,
ψnn
θ (u) = wD · σ(wD−1 · σ(wD−2 · σ(. . . σ(w1 · u+ b1) . . .) + bD−2) + bD−1) + bD,

for our example scalar function ψ.
An NN is a function-approximator, "trained" by minimizing an error norm over data, like MSE∑Np

p=1(ψ
nn
θm(up)− ψp)∂θmi ψ

nn
θm(up)

!
= 0

Approximation generally means |ψnn
θm(up)− ψp| ≠ 0, we aim for ∂θmi ψ

nn
θm(up)

!
= 0.

To reach this, we perform (some form of) gradient descent
θm+1(up) = θm(up)− λm∇θmψ

nn
θm(up), resulting in eMSE(θ

m+1) ≤ eMSE(θ
m).

For gradient descent, we compute ∂θmi ψ
nn
θm(up) (gradient components), using Reverse-mode

Automatic Differentiation.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 18

Physics-Based Deep Learning
Literature survey (incomplete)

Different approaches exist, all extend the idea of function-approximation by NNs with satisfying
PDEs. PDEs are built from differential operators, that are constructed from the NN using AD.

The idea originated (afaik) with Lagaris et al. [1998].
A collocation method with NN as a trial function.

Geometrically complex boundaries: Lagaris et al. [2000], McFall and Mahan [2009].
Galerkin method with NN instead of shape functions: Sirignano and Spiliopoulos [2018].
Raissi et al. [2019], Physics-Informed Neural Networks (PiNN)s - collocation MSE for PDEs
like Lagaris et al. [1998] + data MSE.
More alternatives described by Thuerey et al. [2022].

This talk addresses PiNNs.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 19

Physics-Based Deep Learning
PiNNs on one slide

∂tψ

∇ · (vψ)
∇ψ

∇ · (∇ψ)

R(x, y, z, t) = ∂tψ +∇ · (vψ)−∇ · (λ∇ψ)− S(ψ)

x
y
z
t

ψ

LkLk−1

1. Re-use Automatic Differentiation used for NN training, for computing partial derivatives of the
forward-pass with respect to NN input to construct PDE operators.

2. Extend the loss function with PDE residuals: the NN learns data and the PDE.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 20

Physics-Based Deep Learning
Re-using Automatic Differentiation for differential operators in PDEs

Notation: ∂sf = ∂f(s)
∂s

f(x, y, z) = (x + y)z = f(v(u(x, y), z))

u = x + y

v = uz

∂xu = 1

∂yu = 1
∂uv = z

∂zv = 1

+

·

x

y

z

Evaluating ∂θmi ψ
nn
θm(up) generates partial derivaties

w.r.t. intermediate variables.
The cached partial derivatives are re-used to
compute e.g. ∂tψnn

θm(up),up = (x, y, z, t), and
equivalently for x, y, z,

∇ψnn
θm(up) =

∂xψnn
θm(up)

∂yψ
nn
θm(up)

∂zψ
nn
θm(up)

 (14)

and have to be cached again for higher-order
differential operators like ∇ · ∇ψnn

θm(up).

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 21

Physics-Based Deep Learning
Constructing the PiNN PDE residual I

The residual of the PDE is computed using differential operators computed exactly1 by the
Automatic Differentiation framework - there are no discretization errors.
The residual of a passive scalar transport equation is

Rθ(up) = Rθ(x, y, z, t) = ∂tψ
nn
θm(up) +∇ · (vψnn

θm(up))−∇ · (λ∇ψnn
θm(up))− S(ψnn

θm(up)) (15)

evaluated at collocation points {up}p∈[1,...,Np].
Contrary to training the NN only on data with ∂θmi ψ

nn
θm(up), the PiNN residual requires partial

derivatives of the NN forward-pass with respect to NN inputs.

1Up to floating-point arithmetic errors.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 22

Physics-Based Deep Learning
Constructing the PiNN PDE residual II

One technical detail on how the partial derivatives are evaluated by AD frameworks (e.g.
torch::autograd) is relevant for constructing PiNNs in practice.
The NN ψ : Rk → Rl, ψ = ψ(u, θ), k = d+ 1+ Nθ: d for spatial dimensions and +1 for time in
u = (x, y, z, t), Nθ for all the weights and biases.
The loss eMSE : Rl → R, eMSE = eMSE(ψ(u, θ)).
The ∂θieMSE(ψ(u, θ)) for the gradient descent, is by chain rule in Einstein’s notation

∂ψi

∂θj

∂eMSE

∂ψi
=
∂eMSE

∂θj
, (16)

in matrix notation
Jθψ · JψeMSE (17)

is a dot product of two Jacobians - the NN w.r.t θ, the loss w.r.t. NN output.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 23

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Physics-Based Deep Learning
Constructing the PiNN PDE residual III

For our example NN ψ : R4 → R, ψ(u) = ψ(x, y, z, t) (dropping nn superscript),

Juψ(up) =

∂xψ(up)
∂yψ(up)
∂zψ(up)
∂tψ(up)

1, (18)

where 1 is the 0-rank tensor (scalar) we use to obtain the elements of ∇ψ and ∂tψ,

∇ψ =

(Juψ(up))1
(Juψ(up))2
(Juψ(up))3

 , ∂tψ = (Juψ(up))4 (19)

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 24

Physics-Based Deep Learning
Constructing the PiNN PDE residual IV

Hessian matrix

(Huψ)
T = (JuJuψ)T =

Ju

∂xψ
∂yψ
∂zψ
∂tψ

T

=

∂2xψ ∂x∂yψ ∂x∂zψ∂x ∂x∂tψ
∂y∂xψ ∂2yψ ∂y∂zψ ∂y∂tψ
∂z∂xψ ∂z∂yψ ∂2zψ ∂z∂tψ
∂t∂xψ ∂t∂yψ ∂t∂zψ ∂2t ψ

 (20)

so

∇ · ∇ψ = ∆ψ = HT

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 [1110] = ∂2xψ + ∂2yψ + ∂2zψ (21)

Is eq. (21) valid if up = (t, x, y, z)?

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 25

Physics-Based Deep Learning
Constructing the PiNN PDE residual IV

Hessian matrix

(Huψ)
T = (JuJuψ)T =

Ju

∂xψ
∂yψ
∂zψ
∂tψ

T

=

∂2xψ ∂x∂yψ ∂x∂zψ∂x ∂x∂tψ
∂y∂xψ ∂2yψ ∂y∂zψ ∂y∂tψ
∂z∂xψ ∂z∂yψ ∂2zψ ∂z∂tψ
∂t∂xψ ∂t∂yψ ∂t∂zψ ∂2t ψ

 (20)

so

∇ · ∇ψ = ∆ψ = HT

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 [1110] = ∂2xψ + ∂2yψ + ∂2zψ (21)

Is eq. (21) valid if up = (t, x, y, z)? No - order of partial derivatives changes changes Juψ and Huψ.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 25

Physics-Based Deep Learning
PiNN activation functions

Since we’re differentiating ψnn
θ (up) w.r.t up, the activation functions should be differentiable.

Differentiable activation functions increase the number training iterations.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 26

Physics-Based Deep Learning
PiNN loss function

Total PiNN loss is a weighted sum of the data-loss edMSE (at data points or collocation points),
residual-loss erMSE, boundary-condition loss ebMSE, and initial-value loss eimse

lMSE = edMSE + erMSE + ebdMSE + ebnMSE + eimse (22)

edMSE =
1
Nd

Nd∑
p=1

(ψnn(up)− ψp)
2, ebdMSE =

1
Nbd

Nbd∑
q=1

(ψnn(uq)− ψq)
2

ebnMSE =
1
Nbd

Nbn∑
r=1

(∇ψnn(ur))
2, eiMSE =

1
Nbd

Ni∑
s=1

(ψnn(x, y, z, t = t0)− ψp(x, y, z, t = t0))2
(23)

Minimizing the total loss lMSE makes the PiNN satisfy data, the PDE, and initial/boundary
conditions in the least-squares sense.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 27

Physics-Based Deep Learning
PiNN advantages

Inverse problems
Recover the solution of a PDE with partially-known boundary and initial conditions, and some
noisy measurements.
Learn a heat transfer coefficient from measurements.

High-dimensional PDEs
Solving high-dimensional PDEs (finance?, physics) - Finite Differences do not scale for this.

Optimization
Once trained, a PiNN surrogate model is very fast to evaluate, and should be (way) more
accurate than an 1D ROM ODE solution.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 28

Deep Learning
PiNNs aren’t a "silver bullet" I

The PiNN loss lMSE = edMSE + erMSE + ebdMSE + ebnMSE + eimse errors have different values and often
(very) different gradients.

lMSE = λdedMSE + λrerMSE + λbdebdMSE + λbnebnMSE + λieimse (24)

yaay, more free (PiNN loss regularization) "free" parameters to guesstimate. Alternatives:
adaptive activation functions by Jagtap et al. [2020], modifying Adam solver by Wang et al.
[2021], meta-learning by Psaros et al. [2022].
Different error contribution may mean e.g. that a PiNN with data-assimilation satisfies the
data and the PDE residual better than the BCs and ICs.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 29

Deep Learning
PiNNs aren’t a "silver bullet" II

PiNNs inherit the curse of hyperparameter dimensionality from DL.
PiNNs often take many iterations (epochs) to train: differentiable activation functions have
diminishing gradients and require small optimizer step sizes.
Evaluating many PDE differential operators increases computational costs per epoch.
Yes, a forward pass of a trained NN generates PDE solutions very quickly, but it still takes a lot
of (unautomated) effort to get there.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 30

Physics-Based Deep Learning
PiNN Summary

PiNNs are a relatively simple tool worth looking at
Understand what the NN approximates.
Understand how the Jacobian is used to construct PDE differential operators.
Write down the total loss as the sum of: (data), residual, internal, and boundary condition loss.
Apply adaptive activation functions or something similar to improve training.

If you just want to solve a "normal" PDE, it is overall faster to use a classical numerical method -
there is potential in combining Physics-Based ML with classical numerical methods.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 31

Physics-Based Deep Learning
Other videos

"Introduction to Scientific Machine Learning 2: Physics-Informed Neural Networks", C.
Rackauckas
Hands-on introduction to Physics-Informed Machine Learning, I. Bilionis, A. Hans
"When and why Physics-informed Neural Networks fail to train", P. Perdikaris
"Physics-Informed Neural Networks | Misconceptions", C. Rackauckas

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 32

https://youtu.be/hKHl68Fdpq4
https://youtu.be/hKHl68Fdpq4
https://www.youtube.com/watch?v=o9JaZGWekWQ&t=816s
https://youtu.be/xvOsV106kuA
https://youtu.be/b1zojoTEmnI

A PiNN with OpenFOAM and PyTorch C++ API
Problem definition I

c

(xp, ψp)

R

ψs(x) > 0

ψs(x) < 0

ψs(x) = 0

∂Ω

An implicit sphere is given as a zero-level set

Σ = {x : ψe(x) = 0} (25)

of a signed-distance field to a sphere

ψe(x) = ∥x− c∥2 − R. (26)

Approximate the data from points (xp, ψe
p) randomly

sampled within the solution domain Ω, given that

∥∇ψe
p∥2 = 1 (27)

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 33

A PiNN with OpenFOAM and PyTorch C++ API
Problem definition II

A unit-box domain x, y, z ∈ [0,1], discretized with Nc
cells along each coordinate direction.
Sphere of radius R = 0.25 centered at
c = (0.5,0.5,0.5).
Motivation: solving ∥∇ψe

p∥2 = 1 is quite complex
using the unstructured Finite Volume method, if an
approximative solution is good-enough, PiNNs are an
option.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 34

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: include order in OpenFOAM

// libtorch
#include <torch/torch.h>
#include "ATen/Functions.h"
#include "ATen/core/interned_strings.h"
#include "torch/nn/modules/activation.h"
#include "torch/optim/lbfgs.h"
#include "torch/optim/rmsprop.h"

...

// OpenFOAM
#include "fvCFD.H"

Example implemented as an OpenFOAM
application that links with the PyTorch C++ API
(libtorch).
Include libtorch before OpenFOAM headers.
Compile OpenFOAM with C++14 or higher, in
wmake/rules/General/C++, set
CC = g++$(COMPILER_VERSION)
-std=c++2a.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 35

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: torch::SequentialMulti-Layer Perceptron

torch::nn::Sequential nn;
nn->push_back(torch::nn::Linear(3, hiddenLayers[0]));
nn->push_back(torch::nn::Tanh());
for (label L=1; L < hiddenLayers.size(); ++L)
{

nn->push_back(
torch::nn::Linear(hiddenLayers[L-1], hiddenLayers[L])

);
nn->push_back(torch::nn::Tanh());

}
nn->push_back(

torch::nn::Linear(hiddenLayers[hiddenLayers.size() - 1], 1)
);

torch::Sequential used to construct the MLP.
MLP architecture defined by application options or a dictionary.

Parametrization for hyperparameter tuning.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 36

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: OpenFOAM-libtorch GeometricField transfer

// - Reinterpret OpenFOAM's input volScalarField as scalar* array
volScalarField::pointer vf_data = vf.ref().data();
// - Use the scalar* (volScalarField::pointer) to view
// the volScalarField as torch::Tensor without copying data.
torch::Tensor vf_tensor = torch::from_blob(vf_data, {vf.size(), 1});

torch::from_blob constructs a view (interpretation) of data as torch::tensor.
This works in OpenFOAM because all tensor fields in OpenFOAM are UList<T>
template<class T>
class UList
{

// Private Data
//- Number of elements in UList
label size_;
//- Vector of values of type T
T* __restrict__ v_;

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 37

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: PiNN gradient

// Compute the prediction from the nn.
vf_predict = nn->forward(cc_training);

// Compute the gradient of the prediction w.r.t. input.
auto vf_predict_grad = torch::autograd::grad(

{vf_predict},
{cc_training},
{torch::ones_like(vf_training)},
true

);

Following eq. (18), the scalar-valued forward-pass of the NN is differentiated w.r.t. input data a
"tensor" of input points xp.
For each point xp = (x, y, z) we multiply the Jacobian with 1.
For efficiency reasons (vectorization), calculation is done for all p ∈ P, so we need
v = [1,1,1,1,1, . . . ,1]T in Ju · v, the length of v is Np, the number of points.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 38

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: PiNN loss for our problem

// Compute the data mse loss.
auto mse_data = mse_loss(vf_predict, vf_training);

// Compute the gradient mse loss.
auto mse_grad = mse_loss(

at::norm(vf_predict_grad[0], 2, -1),
torch::ones_like(vf_training)

);

// Combine the losses into a Physics Informed Neural Network.
mse = mse_data + mse_grad;

The erMSE is

erMSE =
1
Np

Nr∑
p=1

(∥∇ψnn
θ (xp)∥2 − 1)2 (28)

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 39

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: hyperparameter tuning I

Grid Search for OpenFOAM+libtorch: works with other methods as well
A Jupyter Notebook uses subprocess.call to run the variations.
An OpenFOAM application parses hyperparameters as options.
Results stored as CSV, with repeated hyperparameters as columns

HIDDEN_LAYERS OPTIMIZER_STEP MAX_ITERATIONS DELTA_X EPOCH DATA_MSE GRAD_MSE TRAINING_MSE

0 10,10,10,10 0.0001 3000 0.0625 1 0.164133 0.927430 1.091560
1 10,10,10,10 0.0001 3000 0.0625 2 0.154731 0.928236 1.082970
2 10,10,10,10 0.0001 3000 0.0625 3 0.148419 0.928779 1.077200
3 10,10,10,10 0.0001 3000 0.0625 4 0.143443 0.929211 1.072650
...

CSVs are concatenated and the final pandas.DataFrame can easily be filtered by repeated
hyperparameters. Avoid the pandas.MultiIndex, it’s not worth the trouble.
Each parameter vector is uniquely identified with the ID that is part of the file name:
pinnFoam-00000000.csv - connected to the hyperparameters using
pandas.DataFrame.unique on hyperparameter columns.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 40

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: hyperparameter tuning II

Loss MSE Grid Search

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 41

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: best hyperparameters

Best hyperparameters:

HIDDEN_LAYERS OPTIMIZER_STEP
20,20,20,20 0.001
MAX_ITERATIONS TRAINING_ID
3000 3

Just adding different eMSE leads to different
gradient flows.
These are example runs, actual runs have
way more epochs.
Exercise: try to find λr and λd in

lMSE = λdedMSE + λrerMSE

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 42

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: real-world training

Real-world training takes a very long time, minutes (!), even with Nc = 16 (4096 cells!).

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 43

A PiNN with OpenFOAM and PyTorch C++ API
Implementation: visualization

Wireframe: ψnn
θM iso-surface.

Gray surface: ψe iso-surface.
Black and gray arrows: (∇ψ)e and ∇ψnn

θM

gradient vectors.
Warped surface: ∥(∇ψ)e −∇ψnn

θM∥2

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 44

A PiNN with OpenFOAM and PyTorch C++ API
Source Code and Data

https://gitlab.com/tmaric/ofw17-training-physics-based-dl
Source Code and Data snapshot [Maric, 2022-07-10].

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 45

https://gitlab.com/tmaric/ofw17-training-physics-based-dl

(My personal) Conclusions on PiNNs

A very promising tool for some challenging problems.
PiNNs aren’t replacing standard numerics any time soon for standard problems.
Very simple compared to standard numerics: no need to implement very complex algorithms
for solving complex (systems of) PDEs.
Know your Jacobians for PDE differential operator calculation using Automatic Differentiation.
The PDE differential operators require differentiable activation functions - difficult to train.
If something goes wrong, guess again - numerical methods can use more analysis.
Hyperparameter tuning takes a lot of effort: automation makes sense.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 46

References I

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation.
SIAM, 2008.

Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions accelerate convergence in
deep and physics-informed neural networks. Journal of Computational Physics, 404:109136, 2020. ISSN 10902716. doi:
10.1016/j.jcp.2019.109136. URL https://doi.org/10.1016/j.jcp.2019.109136. arXiv: 1906.01170 Publisher:
Elsevier Inc.

I.E. Lagaris, A.C. Likas, and D.G. Papageorgiou. Neural-network methods for boundary value problems with irregular
boundaries. IEEE Transactions on Neural Networks, 11(5):1041–1049, September 2000. ISSN 10459227. doi:
10.1109/72.870037. URL http://ieeexplore.ieee.org/document/870037/.

Isaac Elias Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial Neural Networks for Solving Ordinary and Partial
Differential Equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998. doi: 10.1109/72.712178.

Tomislav Maric. Towards physics-based deep learning in openfoam: Combining openfoam with the pytorch c++ api (source
code and data), 2022-07-10. URL https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3527.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 47

https://doi.org/10.1016/j.jcp.2019.109136
http://ieeexplore.ieee.org/document/870037/
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3527

References II

K.S. McFall and J.R. Mahan. Artificial Neural Network Method for Solution of Boundary Value Problems With Exact
Satisfaction of Arbitrary Boundary Conditions. IEEE Transactions on Neural Networks, 20(8):1221–1233, August 2009.
ISSN 1045-9227, 1941-0093. doi: 10.1109/TNN.2009.2020735. URL
http://ieeexplore.ieee.org/document/5061501/.

Michael L Overton. Numerical computing with IEEE floating point arithmetic. SIAM, 2001.
Apostolos F Psaros, Kenji Kawaguchi, and George Em Karniadakis. Meta-learning PINN loss functions. Journal of

Computational Physics, 458:111121, June 2022. ISSN 00219991. doi: 10.1016/j.jcp.2022.111121. URL
https://linkinghub.elsevier.com/retrieve/pii/S0021999122001838.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:
686–707, 2019. ISSN 10902716. doi: 10.1016/j.jcp.2018.10.045. URL
https://doi.org/10.1016/j.jcp.2018.10.045. Publisher: Elsevier Inc.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations.
Journal of Computational Physics, 375:1339–1364, December 2018. ISSN 00219991. doi: 10.1016/j.jcp.2018.08.029.
URL https://linkinghub.elsevier.com/retrieve/pii/S0021999118305527.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 48

http://ieeexplore.ieee.org/document/5061501/
https://linkinghub.elsevier.com/retrieve/pii/S0021999122001838
https://doi.org/10.1016/j.jcp.2018.10.045
https://linkinghub.elsevier.com/retrieve/pii/S0021999118305527

References III

N Thuerey, P Holl, M Mueller, P Schnell, F Trost, and K Um. Physics-based Deep Learning. 2022. arXiv: 2109.05237v2.
Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed

Neural Networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081, January 2021. ISSN 1064-8275. doi:
10.1137/20M1318043. URL https://epubs.siam.org/doi/10.1137/20M1318043. Publisher: Society for
Industrial and Applied Mathematics.

OFW17 2022-07-11 | maric@mma.tu-darmstadt.de MMA, Mathematics, TU Darmstadt | FMC, Fluid Mechanics, TU Braunschweig | Tomislav Maric, Andre Weiner | 49

https://epubs.siam.org/doi/10.1137/20M1318043

	Deep Learning Overview
	Physics-Based Deep Learning Overview
	Combining PyTorch C++ API and OpenFOAM for Physics-Informed Neural Networks
	References

