

Modelling the heating performance

of magnetic nanoparticles for

hyperthermia applications

 User Manual v2.0.0

Caroline Karina Chandra

April 19, 2021

Table of Content i

Caroline Karina Chandra

Matriculation Number: 2507556

Course of Studies: M. Sc. Materials Science

User Manual v2.0.0 (April 19, 2021)

Topic: Modelling the heating performance of magnetic nanoparticles for hyperthermia applications

Submission: (v1.0.0) March 29, 2021

 (v2.0.0) April 19, 2021

Supervisor: Dr. Imants Dirba

Prof. Dr. Oliver Gutfleisch

Functional Materials

Alarich-Weiss-Str. 16

64287 Darmstadt

Table of Content ii

Table of Content

Table of Content ii

1 What’s new in v2.0.0 1

2 Installation 2

2.1 Anaconda Navigator and python libraries 2

2.2 JupyterLab 3

2.3 Python libraries import 3

2.3.1 pandas 4

2.3.2 NumPy 5

2.3.3 Matplotlib 5

2.3.4 ipywidgets 5

2.3.5 time 5

3 Using the files 6

3.1 Calculation 6

3.1.1 Relaxation times 6

3.1.2 Power loss density and SAR 7

3.1.3 Determining optimum particle diameter 8

3.1.4 SAR at optimum particle diameter 9

3.1.5 Comparing the heating performance of multiple materials 9

3.1.6 Atkinson (and Brezovich) limit 10

3.2 Functionalities 10

3.2.1 Navigation bar matplotlib widget 10

3.2.2 Export data 10

3.3 Files 11

3.3.1 libraries.ipynb 12

3.3.2 allcodes.ipynb and userfriendly_plotter.ipynb 13

3.3.3 allcodes3d.ipynb and userfriendly_quickplot.ipynb 17

3.3.4 expsim.ipynb and experiment_simulation.ipynb 20

3.3.5 list_of_csv.txt 21

4 Errors and Warning 23

4.1 name ‘…’ is not defined 23

4.2 RuntimeWarning 23

4.3 IOPub data rate exceeded 24

4.4 ModuleNotFoundError 24

5 Outlook 25

5.1 Potential future improvement 25

5.1.1 Technical improvement 25

5.1.2 Calculation (approximation) improvement 25

5.2 Unsolved technical problems 25

6 Reference 26

Table of Figures 27

Table of Content iii

List of abbreviation 28

Chapter 1: What’s new in v2.0.0 1

1 What’s new in v2.0.0

 Added:

 - changelog.ipynb
 - etc.ipynb
 - material_properties.csv
 - medium_properties.csv
 - User_Manual_v2.pdf

 Deleted:

 - libraries.ipynb

 - User_Manual_v1.pdf

 etc.ipynb

 - save unit conversion

 - save constants

 - save DropDown option for other files

 - imported in allcodes.ipynb, allcodes3d.ipynb, expsim.ipynb

 changelog.ipynb
 - track changes made for every available version

 allcodes.ipynb

 - include the numpy array completelist directly as global variable in the file

 - field, frequency, and surfactant layer thickness are in allcodes.ipynb

 - adding option to exclude Brownian relaxation from the calculation
 - add extra note in the export function accordingly

 - import material_properties.csv and medium_properties.csv directly in the file

 - progress bars for importing .csv files (actual loading time for calculating completelist)
 completelist numpy array

 - has the shape of (84, 95)

 palltaun = 55-74

 pmaxalltaun = 75-94

 material_properties.csv
 - contains databank for materials only

 medium_properties.csv
 - contains databank for mediums only

Chapter 2: Installation 2

2 Installation

This version of User Manual is valid for v1.0, last update: March 28, 2021.

The simulation is run on JupyterLab Framework as ipython notebook. To be able to operate on

JupyterLab, Anaconda Navigator must be installed. Moreover, multiple python libraries must be installed

as well.

2.1 Anaconda Navigator and python libraries

Anaconda can be installed from https://www.anaconda.com/distribution/. The latest as well

as older versions are available for download through the link. How to properly install necessary files is

explained in the following steps:

1. Open “Anaconda Navigator”.

2. Create virtual programming environment, go to “Environments” >> “Create” >> give a name,

for example “scientcomp” >> tick Python packages

3. Go to “Home”, install Jupyterlab

4. Start “Anaconda Prompt” to install the necessary python libraries.

5. Go to the newly created environment with conda activate scientcomp

6. Install pip to load libraries using conda install pip

7. Following libraries are to be loaded:

numpy==1.18.2

pandas==1.0.3

pyomo==5.6.9

ffmpeg==1.4

matplotlib==3.2.1

scipy==1.4.1

numba==0.49.0

conda install -c conda-forge ipopt glpk

conda install pytorch

conda install -c conda-forge ipywidgets

8. Install matplotlib widget on JupyterLab using following code:

conda install -c conda-forge nodejs

pip install ipympl

pip install --upgrade jupyterlab

jupyter labextension install @jupyter-widgets/jupyterlab-manager

jupyter labextension install jupyter-matplotlib

jupyter nbextension enable --py widgetsnbextension

Chapter 2: Installation 3

9. Anaconda Navigator is installed and JupyterLab is ready to use. If this is not the case, refer to

Chapter 4: Error

2.2 JupyterLab

JupyterLab is the next-generation web-based user interface for Project Jupyter. JupyterLab will

eventually replace the classic Jupyter Notebook. Throughout this transition, the same notebook

document format will be supported by both the classic Notebook and JupyterLab, Figure 1.

Figure 1: JupyterLab and Jupyter Notebook from Anaconda Navigator.

2.3 Python libraries import

Loading python libraries via pip in Anaconda Prompt allows the libraries to be imported in the ipython

notebook .ipynb. Following imports are necessary:

import pandas as pd

import numpy as np

import time

import matplotlib

import matplotlib.pyplot as plt

from matplotlib.widgets import CheckButtons

from matplotlib.offsetbox import AnchoredText

from matplotlib.patches import Patch

from matplotlib import cm

from matplotlib.lines import Line2D

from mpl_toolkits.mplot3d import Axes3D

%matplotlib widget

import ipywidgets as wg

from ipywidgets import HBox, VBox, Checkbox, ToggleButton

from IPython.display import display

To import another .py files, the command is %run filename, while another .ipynb files, the

command ist %run filename.ipynb

Chapter 2: Installation 4

If a library is already imported in one particular file, and that particular file as a whole is imported to a

new file, the import need not to be repeated in the new file. The magic command % takes the import

from the imported file as well.

The purpose of import library as something with shorter name has no technical reason other

than to simply shorten the name and minimizing the typing effort. As an example, instead of writing

matplotlib.pyplot.plot(x, y), only plt.plot(x, y) is necessary.

The command from library import something has the same purpose. Instead of importing the

whole library, only that particular command(s) is imported. For example, if the command display is

needed, by writing from IPython.display import display, no additional prefix is necessary

anymore: display(...) instead of IPython.display.display(...).

2.3.1 pandas

pandas is imported in libraries.ipynb. All databases are stored as pandas data frame. Pandas allows

easy organizing the database thanks to its row and column naming ability (which is not the case for

numpy array). [1] To call the intended cell, the following command notation is required:

name_of_dataframe[‘column_name’][‘row_name’].

As an example, unit conversion for all files which are also stored as a pandas data frame, Figure 2.

Figure 2: unit conversion stored as pandas data frame and its output.

In this case, the command unit['Factor']['Anisotropy constant'] will give out the value 1e3

or 1000 if printed.

Chapter 2: Installation 5

2.3.2 NumPy

NumPy is imported in libraries.ipynb. NumPy is an easy-to-use numerical computing tool which

offers large collection of high-level mathematical functions, linear algebra, N-dimensional arrays and

matrices, etc. The concept of NumPy array is the standard of array computing today. The array

completelist is stored as NumPy array. The export function also depends on NumPy and pandas. [2]

2.3.3 Matplotlib

Matplotlib is a numerical mathematical extension of NumPy for plotting library. The extension

matplotlib.pyplot has a collection of function that makes matplotlib works like MATLAB. One

known drawback of plotting with matplotlib is the 3D plotting function. Matplotlib does not have an

actual 3D engine. For example, the import mpl_toolkits.mplot3d takes a scatter point and projects

them to what it would look like on a 2D plot from a particular camera position (angle view). This is a

little hack from Matplotlib to get some 3D functionality. However, this causes the zorder argument to

be lost. Regardless of what is in front, the object that is plotted last will override the one plotted before

(if viewed from a particular point-of-view). The zorder argument can be set manually, either by adding

item.set_zorder(number) as a command or writing the argument zorder=number directly as a

parameter in the plt.plot(…). Smaller number (integer, starts from 1) corresponds to further position

from viewer point-of-view. [3]

2.3.4 ipywidgets

In order to make the file to be user-friendly, it hast to be interactive. User must be able to give (easy and

understandable) input into the program to plot without having to write an actual python code.

ipywidgets makes it possible [4]. ipywidgets are interactive HTML widgets for Jupyter notebooks

(JupyterLab) and the IPython kernel [5].

2.3.5 time

Python provides time library without having to install extra modules via pip. The command

time.time() returns the number of seconds passed since January 1, 1970, 00:00:00 at UTC in second.

The command time.strftime("%Y%m%d_%H%M%S") returns real-time in string with the format

YYYYMMDD_hhmmss (for example, March 22, 2021, 8:15 p.m. would be 20210322_201500). This

function is used to name the exported file. Naming the file with real-time stamp avoid any of the exported

file to be overwritten. [6]

Chapter 3: Using the files 6

3 Using the files

3.1 Calculation

3.1.1 Relaxation times

The formula to calculate Néel relaxation time [7]:

𝜏𝑁 = 𝜏0 (
𝐾𝑢𝑉𝑀

𝑘𝐵𝑇
)

−1/2

𝑒
𝐾𝑢𝑉𝑀
𝑘𝐵𝑇 (1)

With 𝑉𝑀 the volume of sphere, Equation (1) can be rewritten into:

𝜏𝑁 = 𝜏0 (
𝐾𝑢 𝜋 𝑑𝑝

3

𝑘𝐵𝑇
)

−1/2

𝑒
𝐾𝑢 𝜋 𝑑𝑝

3

𝑘𝐵𝑇 (2)

𝜏𝑁 =
𝜏0

√
𝐾𝑢 𝜋 𝑑𝑝

3

6 𝑘𝐵𝑇

 exp (
𝐾𝑢 𝜋 𝑑𝑝

3

6 𝑘𝐵𝑇
)

(3)

Equation (3) is the final formula used in the calculation of 𝜏𝑁. The parameters are as follows:

𝜏𝑁 ∶ Néel relaxation time [𝑠]

𝜏0 ∶ constant factor (10−9 𝑠)

𝐾𝑢 ∶ anisotropy constant [𝐽/𝑚3]

𝑑𝑝 ∶ particle diameter [𝑚]

𝑘𝐵 ∶ Boltzmann constant [𝑚2𝑘𝑔/𝑠2𝐾1]

𝑇 ∶ temperature (300 K)

As 𝑑𝑝 is present in the exponential function, this term could rapidly go into infinity. As it goes to the

infinity, instead of any number, python returns inf, which can’t be used for further calculation. The

threshold value for a number being non-infinity in python is 1.8e308. Any number larger than this is

identified as infinity. The information at number this large is irrelevant to this work and therefore, the

calculation is a waste of memory. To reduce the number of iterations, a limit can be set. The limit is

arbitrary, in this work, the limit is set to 1e50 for the exponential factor.

exp (
𝐾𝑢 𝜋 𝑑𝑝

3

6 𝑘𝐵𝑇
) = 1𝑒50 (4)

ln (𝑒𝑥𝑝 (
𝐾𝑢 𝜋 𝑑𝑝

3

6 𝑘𝐵𝑇
)) = ln(1𝑒50) (5)

𝐾𝑢 𝜋 𝑑𝑝
3

6 𝑘𝐵𝑇
= ln(1𝑒50) (6)

𝑑𝑝
3 =

6 𝑘𝐵𝑇

𝐾𝑢 𝜋
ln(1𝑒50) (7)

Chapter 3: Using the files 7

𝑑𝑝(𝑙𝑖𝑚𝑖𝑡) = (
6 𝑘𝐵𝑇 ln(1𝑒50)

𝐾𝑢 𝜋
)

1
3

 (8)

This calculation in Equation (8) is done simply to define a limit when making an array of 𝑑𝑝.

The formula to calculate Brownian relaxation time [8]:

𝜏𝐵 =
𝜋 𝜂 𝑉𝐻

𝑘𝐵𝑇
 (9)

With 𝑉𝐻 being the hydrodynamic volume (volume of sphere nanoparticle and fluid coating), it can be

rewritten as follow:

𝜏𝐵 =
𝜋 𝜂 (𝑑𝑝 + 𝑑𝑠)

3

2 𝑘𝐵𝑇
 (10)

The parameter 𝑑𝑠 is the surfactant layer thickness of the particle and 𝜂 is viscosity of the fluid [𝑁𝑠/𝑚2].

Equation (10) is the final formula used for calculating 𝜏𝐵.

The total relaxation time is the reciprocal combination of both, Equation (11).

1

𝜏𝑡𝑜𝑡𝑎𝑙
=

1

𝜏𝑁
+

1

𝜏𝐵
 (11)

3.1.2 Power loss density and SAR

The formula for power loss density is [9]:

𝑃 =
𝜋 𝜇0

2 𝑀𝑠
2 𝑉𝑀𝐻2

3 𝑘𝐵𝑇

𝜔𝜏

1 + (𝜔𝜏)2
 𝑓 (12)

The parameters are as follow:

𝑃 ∶ powerloss density [W/m3]

𝜇0 ∶ vacuum permeability [N/A2]

𝑀𝑠 ∶ saturation magnetization [𝐴/𝑚]

𝐻 ∶ field [𝐴/𝑚]

𝑓 ∶ frequency [𝐻𝑧]

𝜔 ∶ angular frequency [𝐻𝑧]

The maximum is reached when 𝜔𝜏 = 1:

𝑑
(𝜔𝜏)

1 + (𝜔𝜏)2

𝑑 (𝜔𝜏)
= 0

(13)

Let 𝑥 = (𝜔𝜏):

𝑑
𝑥

1 + 𝑥2

𝑑 𝑥
= 0 (14)

−
𝑥2 − 1

(𝑥2 + 1)2
= 0 (15)

Chapter 3: Using the files 8

𝑥 = 1 → (𝜔𝜏) = 1 (16)

Specific absorption rate (SAR [𝑊/𝑔]) is powerloss density normalized by the density of the nanoparticle

𝜌 [𝑘𝑔/𝑚3]:

𝑆𝐴𝑅 =
𝑃

𝜌
 (17)

The final formula for calculating SAR within this work is written in Equation (18):

𝑆𝐴𝑅 =
𝜋3 𝜇0

2 𝑀𝑠
2 𝑑𝑝

3 𝐻2 𝑓2 𝜏

9 𝑘𝐵𝑇 𝜌 (1 + (2𝜋𝑓𝜏)2)
 (18)

3.1.3 Determining optimum particle diameter

As described in Equation (16), a maximum is reached when (𝜔𝜏) = 1. By expanding this term, the

particle diameter can be determined.

2𝜋𝑓𝜏 = 1 (19)

For high viscosity fluid, the influence of 𝜏𝐵 is completely negligible, thus, leaving 𝜏𝑁 to take the role of

relaxation time. Combining Equation (19) and Equation (3) leaves:

2𝜋𝑓
𝜏0

√
𝐾𝑢 𝜋 𝑑𝑝

3

6 𝑘𝐵𝑇

 exp (
𝐾𝑢 𝜋 𝑑𝑝

3

6 𝑘𝐵𝑇
) = 1

(20)

Let 𝑥 =
𝐾𝑢 𝜋

6 𝑘𝐵𝑇
:

2𝜋𝑓
𝜏0

√𝑥 𝑑𝑝
3

 exp(𝑥 𝑑𝑝
3) = 1

(21)

 exp(𝑥 𝑑𝑝
3) =

(𝑥 𝑑𝑝
3)

0.5

2𝜋𝑓𝜏0
 (22)

𝑥 𝑑𝑝
3 = ln (

(𝑥 𝑑𝑝
3)

0.5

2𝜋𝑓𝜏0
) (23)

𝑥 𝑑𝑝
3 = ln ((𝑥 𝑑𝑝

3)
0.5

) − ln(2𝜋𝑓𝜏0) (24)

𝑥 𝑑𝑝
3 − ln ((𝑥 𝑑𝑝

3)
0.5

) = ln(2𝜋𝑓𝜏0) (25)

𝑥 𝑑𝑝
3 − ln(𝑥0.5) + ln(𝑑𝑝

1.5) = ln(2𝜋𝑓𝜏0) (26)

𝑥 𝑑𝑝
3 + ln(𝑑𝑝

1.5) = ln(2𝜋𝑓𝜏0) + ln(𝑥0.5) (27)

𝐾𝑢 𝜋

6 𝑘𝐵𝑇
 𝑑𝑝

3 + ln(𝑑𝑝
1.5) = ln(2𝜋𝑓𝜏0) + ln ((

𝐾𝑢 𝜋

6 𝑘𝐵𝑇
)

0.5

)
(28)

This leaves the equation unable to be solved analytically. However, Equation (20) can be solved

numerically when one goes to the iteration of 𝑑𝑝 for each 𝑓. Depending on the iteration step, the process

Chapter 3: Using the files 9

can be massively shortened by using larger step and going over the value of 1 and then go back with

finer step. A pseudo-code for this goes as follow:

for j in range(len(f)): # iteration of f

 for i in range(len(dp)): # iteration of dp, step size = 1 nm

 calculate variable wt # as in Equation (20), dp iterated by 1 nm

 if wt > 1.0:

 for k in range(100): # iteration of dp, step size = 0.01 nm

 calculate variable wt # dp going from .99 to .01 nm

 if wt == 1.0:

 break # stop iteration and save the found dp

 break # no need to check further dp value with step size of 1 nm

3.1.4 SAR at optimum particle diameter

The highest SAR that can be achieved mathematically by a material is at the highest available frequency

and field. Because at the optimum 𝑑𝑝 the product of 𝜔𝜏 = 1, the optimizable term becomes a constant,

Equation (35):

𝜔𝜏

1 + (𝜔𝜏)2
=

1

1 + 12
= 0.5 (29)

This allows the SAR formula to be simplified to Equation (30):

𝑃 =
𝜋 𝜇0

2 𝑀𝑠
2 𝑉𝑀

3 𝑘𝐵𝑇

1

2
𝑓 𝐻2 (30)

And further simplification leads to Equation (31):

𝑃 =
𝜋2 𝜇0

2 𝑀𝑠
2 𝑑𝑝

3

36 𝑘𝐵𝑇
𝑓 𝐻2 (31)

Increasing field, however, has higher impact on the SAR value than frequency, for two reason:

1. Field is to the second power and is independent from all other parameter, while frequency

increases the SAR only linearly.

2. Increasing frequency reduces optimum 𝑑𝑝 slightly, which is to the third power.

3.1.5 Comparing the heating performance of multiple materials

For comparison purpose, constants (and parameters that can be kept constant) can be omitted, leaving

only 𝑀𝑠, 𝑑𝑝, 𝑓, 𝜏, and 𝜌. Field is neglectable since it is an independent parameter. For each material, the

SAR with arbitrary unit can be calculated, Equation (32).

𝑆𝐴𝑅𝑐𝑜𝑚𝑝𝑎𝑟𝑒 =
𝑀𝑠

2 𝑑𝑝
3 𝑓2 𝜏

𝜌 (1 + (2𝜋𝑓𝜏)2)
 (32)

The particle diameter 𝑑𝑝 is the optimum 𝑑𝑝 for each frequency calculated according to Chapter 3.1.3

Chapter 3: Using the files 10

3.1.6 Atkinson (and Brezovich) limit

Atkinson limit is a biological limit that was based on the patient withstanding of the treatment for more

than one hour without major discomfort. The heat generated by eddy current is proportional to the

square of the product of 𝐻𝑓 (and the square of the radial distance). This means that unless the product

of 𝐻𝑓 is maintained below a certain limit, (healthy) body tissues might overheat. The Atkinson limit is

proposed to be 4.85e8 A/ms. [10] With typical used frequency of 𝑓 = 100 𝑘𝐻𝑧 [11].

𝐻𝑓 = 4.85𝑒8
𝐴

𝑚𝑠
 (33)

𝐻 =
4.85𝑒8

𝐴
𝑚𝑠

1𝑒5 1/𝑠
= 4.85𝑒3

𝐴

𝑚
≈ 61 𝐺 (34)

Researchers are currently discussing about this limit being more like a recommended value according to

statistical data which depends highly from person to person, rather than a critical absolute value.

3.2 Functionalities

3.2.1 Navigation bar matplotlib widget

Matplotlib widget (the import %matplotlib widget) offers user interaction with built-in navigation

bar with various function, including download plot, Figure 3.

Figure 3: navigation bar of matplotlib widget.

3.2.2 Export data

Under every plot, with exception of multi plot 2D (𝑑𝑝 − 𝜏) and 3D compare (𝑓 − 𝑆𝐴𝑅𝑚𝑎𝑥 − 𝑑𝑝), there is

an export button. The function of this button is self-explanatory, to export the data (from plot above it)

to a .csv file, Figure 4.

Figure 4: clicked export button.

Chapter 3: Using the files 11

When the export button is clicked, a .csv file will be generated. The file name has the format of current

time, YYYYMMDD_hhmmss. The printed output next to the button serves only as an assurance for the

user that the button is clicked. The exported .csv files consist of various axis values and a header at the

top of the column. The export function is written on libraries.ipynb using NumPy and pandas,

Figure 5.

Figure 5: export function in libraries.ipynb.

3.3 Files

Some files are user-friendly, and some are not:

Non user-friendly: User-friendly:

- libraries.ipynb - userfriendly_plotter.ipynb

- allcodes.ipynb - userfriendly_quickplot.ipynb

- allcodes3d.ipynb - experiment_simulation.ipynb

- expsim.ipynb - list_of_csv.txt

To use any of the files, user must open JupyterLab from Anaconda Navigator:

1. Open “Anaconda Navigator”.

2. Lauch “JupyterLab”. This will trigger your default browser to be opened.

3. The current active directory can be seen on the left side, go to intended directory (where the

files are saved).

4. Double click to open desired file.

5. Select “Run” from top left toolbar.

6. Select “Run All Cells” from the dropdown menu.

7. Wait a few second until the default home view is shown.

Chapter 3: Using the files 12

3.3.1 libraries.ipynb

Database are written in this file. Material database contains 𝑀𝑠, 𝐾𝑢 and 𝜌. Medium contains 𝜂. There are

four field values stored, they are 100, 200, 300, 350 Gauss. The frequencies stored are 98, 158, 204,

313, 402 kHz. Those are the values, which are commonly used in the lab during an actual experiment.

If user intends to use another value of field and or frequency, user can either change it directly in the

libraries (for continuous use in userfriendly_plotter) or doing it manually each time in

userfriendly_quickplot or experiment_simulation.

In libraries.ipynb, completelist is an array stored as global variable written as a NumPy array with

np.shape(completelist) equals to (length_of_medium * length_of_material, 55). The array stores

all material with each medium in every row. The pseudo-code determining the row order goes as follow:

for i in range(length_of_medium):

for j in range(length_of_material):

append

Each column contains:

Material = 0 𝑑𝑝_all = 6

𝑀𝑠 = 1 𝜏𝑁 , 𝜏𝐵, 𝜏𝑡𝑜𝑡𝑎𝑙 = 7-9

𝐾𝑢 = 2 SAR_all = 10-29

𝜌 = 3 SARmax_all = 30-49

Medium = 4 𝑑𝑝_max = 50-54

𝜂 = 5

The order of the row goes as follows:

0 Material_0 → Medium_0

1 Material_1 → Medium_0

2 Material_2 → Medium_0

⋮ ⋮ → Medium_0

⋮ Material_n → Medium_0

⋮ Material_0 → Medium_1

⋮ Material_1 → Medium_1

⋮ Material_2 → Medium_1

⋮ ⋮ → Medium_1

⋮ Material_n → Medium_1

Example:

return(completelist[2,3]) # calls row 2, col 3 (density)

>> rho # rho of Material_2 in Medium_0 (whichever the medium doesn’t matter in this case)

Chapter 3: Using the files 13

The file libraries.ipynb is imported in all other files. allcodes is completely dependent of it,

while allcodes3d and expsim are partially dependent (unit conversions, global variable). No user

output is to be expected from libraries.ipynb.

The saved values in material and medium databases are theoretical values (from literature). Saturation

magnetization 𝑀𝑠 saved are the value measured (theoretical) at 𝐻 = 2 𝑇 or 𝐻 = 2000 𝐺. The purpose of

deliberately having all saturation magnetization at 𝐻 = 2 𝑇, despite aware that the values are obviously

off, are comparability between materials and practical reason, since these values are easier to find in the

literature than, for example, the saturation magnetization of a certain material at 𝐻 = 0.35 𝑇.

3.3.2 allcodes.ipynb and userfriendly_plotter.ipynb

The code used to run userfriendly_plotter.ipynb is stored in allcodes.ipynb.

The default home view looks as shown in Figure 6.

Figure 6: default home view of userfriendly_plotter.ipynb after "Run All Cells". Hidden ⋯ is %run allcodes.ipynb.

The file can plot following:

- single plot 2D:

o Particle diameter – Relaxation times (𝑑𝑝 − 𝜏)

o Particle diameter – SAR (𝑑𝑝 − 𝑆𝐴𝑅)

o Frequency – maximum SAR (𝑓 − 𝑆𝐴𝑅𝑚𝑎𝑥)

o Field – maximum SAR (𝐻 − 𝑆𝐴𝑅𝑚𝑎𝑥)

- multi plot 2D:

o Particle diameter – Relaxation times (𝑑𝑝 − 𝜏)

o Saturation magnetization – maximum SAR (𝑀𝑠 − 𝑆𝐴𝑅𝑚𝑎𝑥)

- 3D/4D plot:

o Frequency – Field – Particle diameter – maximum SAR (𝑓 − 𝐻 − 𝑑𝑝 − 𝑆𝐴𝑅𝑚𝑎𝑥)

o Frequency – SAR – Particle diameter (𝑓 − 𝑆𝐴𝑅𝑚𝑎𝑥 − 𝑑𝑝)

The purpose of allcodes (and userfriendly_plotter) is for comparison between material in their

respective theoretical state and ideal condition. All values returned by allcodes are incomparable to

experimental results, since MFH is not carried at 𝐻 = 2 𝑇. Moreover, the assumption of linear response

Chapter 3: Using the files 14

is not valid anymore at field that high. Single and multi plot 2D take in completelist precalculated

values (from libraries.ipynb).

In the single plot 2D where SARs are plotted, all in libraries listed frequencies and fields are used

for calculation at once. To avoid overcrowding the graph, there are toggle buttons that serve as activation

button to show/hide the plot, Figure 7.

Figure 7: ToggleButton for show/hide respective plot.

In Figure 7, the toggle buttons at the top with the field are available at (𝑑𝑝 − 𝑆𝐴𝑅) and (𝑓 − 𝑆𝐴𝑅𝑚𝑎𝑥),

while the one at the bottom with the frequency are available at (𝐻 − 𝑆𝐴𝑅𝑚𝑎𝑥). Activated toggle button

means “show” and deactivated means “hide”. In the plot (𝑓 − 𝑆𝐴𝑅𝑚𝑎𝑥) and (𝐻 − 𝑆𝐴𝑅𝑚𝑎𝑥), the SARs are

calculated at optimum 𝑑𝑝 (written above the x-axis or in the legend).

In the multi plot 2D (𝑑𝑝 − 𝜏) only 𝜏𝑡𝑜𝑡𝑎𝑙 would be plotted. The functions of the buttons are written and

are self-explanatory. The “Remove” function only works once for last plotted line.

Figure 8: buttons found in multi plot 2D (𝑑𝑝 − 𝜏).

No export function is offered here since the data is not complete anyway. For exporting user could refer

to single plot (𝑑𝑝 − 𝜏) for each desired material-medium combination.

In multi plot 2D (𝑀𝑠 − 𝑆𝐴𝑅𝑚𝑎𝑥), the SAR is all calculated at their respective optimum particle diameter

(written in legend) at 𝑓 = 402 𝑘𝐻𝑧 and 𝐻 = 350 𝐺, Figure 9.

Chapter 3: Using the files 15

Figure 9: multi plot 2D (𝑀𝑠 − 𝑆𝐴𝑅𝑚𝑎𝑥) at at 𝑓 = 402 𝑘𝐻𝑧 and 𝐻 = 350 𝐺.

This plot basically compares the heating performance of all materials saved in libraries without

further user input. The values for 𝑓 and 𝐻 are chosen that way, because mathematically the SARs are at

their highest at those values (refer to Chapter 3.1.4).

The 4D plot takes material specific parameters from completelist as well, but doing the calculation

independently from libraries.ipynb. Frequency and field are made-up values, while particle

diameter and SAR are calculated within the file themselves. Particle diameter is calculated based on

Equation (20). SAR is calculated based on Equation (18). SAR information is shown by the color, thus,

making the plot 4D. These are the steps:

1. Load the material specific parameters as chosen from the dropdown list from libraries.

2. Create an array for frequency.

3. Prepare an empty array for saving optimum 𝑑𝑝 for each frequency.

4. Calculate the optimum 𝑑𝑝 for one frequency:

a. Iterate with a step size of 1 for 𝑑𝑝, increasing from 1, 2, 3, …. The number of iterations

can be set to 100, this does not matter, as the loop will be broken before the maximum

number of iterations is reached.

b. Set an if according to Equation (20) to break the loop once 1 is exceeded, the maximum

value, Equation (35).

2𝜋𝑓
𝜏0

√
𝐾𝑢 𝜋 𝑑𝑝

3[𝑖]
6 𝑘𝐵𝑇

 exp (
𝐾𝑢 𝜋 𝑑𝑝

3[𝑖]

6 𝑘𝐵𝑇
) > 1

(35)

Chapter 3: Using the files 16

c. Iterate with a step size of 0.01 for 𝑑𝑝, decreasing from (𝑑𝑝[𝑖]) to (𝑑𝑝[𝑖] − 1). The number

of iterations is 100, this means x.99, x.98, x.97, …, x.01 with x being (𝑑𝑝[𝑖]).

d. Set an if that satisfy Equation (20), break the loop once it is satisfied.

e. The 𝑑𝑝 that satisfy Equation (20) is the optimum particle diameter for one particular

value of frequency. Append this value to the prepared array.

5. Repeat step 4 to cover all frequency. For each frequency, there is one optimum particle diameter.

After this point, the shape of the frequency array and the 𝑑𝑝 array must be the same.

6. Create an array for field.

7. Via nested list comprehension, create a new array for frequency, field, and particle diameter.

Each array should have the shape of (len(f) * len(H), 1).

a. New H-array : np.array([i for i in H for r in range(len(f))])

b. New f-array : np.array([i for i in f] * len(H))

c. New dp-array : np.array([i for i in dp] * len(H))

8. Calculate SAR using Equation (18).

9. Plot scatter point using ax.scatter(x, y, z, c=color).

10. Show colorbar using cbar = fig.colorbar(img).

11. 4D scatter plot is ready.

Step 7, 8, and 9 make sure, that the the command ax.scatter must only be called once. This is a

much faster method than doing a simple for-loop, in which ax.scatter is called len(H) times.

1. Iterate through H-array (H[i]).

2. Calculate SAR using Equation (18) for each H[i]. At this point, SAR-array has the shape of

(Nx1) as frequency- and dp-array.

3. Plot scatter point with x = array(f), y = float(H), z = array(dp), c = array(SAR) using

ax.scatter directly for each (H[i]).

On a Core i5 8th Gen laptop with 8 GB RAM, the average runtime (statistical average of 10 runs) if using

nested list comprehension is 1.38 s, while a simple for-loop needs in average 6.87 s. While it is clearly

more efficient to use nested list comprehension method, user could opt for simple for-loop. One reason

why one would want to opt for a slower method is that by using for-loop, there is an option to have a

progress bar shown on the screen with an actual percentage of iterated H-array. The progress bar does

not have any technical purpose, its sole purpose is for user’s sanity check if using older computers or

using a larger dataset (where the waiting time is not a mere 1.38 s or 6.87 s). Without progress bar, user

can’t be sure, if the code is actually running or the user is waiting in eternity since the code is not running.

Progress bar requires a continuously changing number for its percentage (which can be perfectly done

in for-loop). Nested list comprehension calculates all at once and plot the data as a whole, which leaves

Chapter 3: Using the files 17

no continuously changing number. For this reason, progress bar is only available for plotting using

for-loop method.

As shown in Equation (32), many parameters can be neglected for the sole purpose of comparison

between material. A 3D graph with frequency and SAR in the x- and y-axis and particle diameter as

color-map can be plotted. The functionality is similar to (𝑑𝑝 − 𝜏) 2D multi plot, Figure 10.

Figure 10: functionalities offered in (𝑓 − 𝑆𝐴𝑅 − 𝑑𝑝) 3D graph, high viscosity medium is assumed.

This plot focus on the heating performance of the material, independent of the applied field. The unit of

the SAR is arbitrary. The color bar shows no absolute values, only min and max. The dp min and max of

each material is different and is written on the legend. The color map of each set of scatter point (each

material) is normalized (0 - 1).

Figure 11: sample (𝑓 − 𝑆𝐴𝑅 − 𝑑𝑝) plot containing multiple materials.

3.3.3 allcodes3d.ipynb and userfriendly_quickplot.ipynb

These files are partly dependent of libraries.ipynb as they take unit conversion and global

variables from libraries. The default home view of userfriendly_quickplot.ipynb looks as shown

in Figure 12.

Chapter 3: Using the files 18

Figure 12: default home view of userfriendly_quickplot.ipynb after "Run All Cells". Hidden ⋯ is %run allcodes3d.ipynb.

Depends on the type of graph, various user input is required. The values shown by default correspond

to the theoretical values of pure iron and water as medium. Certain data type of user input and the unit

are predetermined as follow:

Material : str 𝐾𝑢 [𝑘𝐽/𝑚3] : float 𝜌 [𝑔/𝑐𝑚3] : float 𝑀𝑠 [kA/m] : float

Medium : str 𝑑𝑠 [𝑛𝑚] : float 𝜂 [𝑁𝑠/𝑚2] : float

𝑓 [𝑘𝐻𝑧] : int 𝐻 [𝐺] : int 𝑑𝑝 [𝑛𝑚] : float

Following graphs can be plotted using these files:

- 2D:

o Particle diameter – Relaxation times (𝑑𝑝 − 𝜏)

o Particle diameter – SAR (𝑑𝑝 − 𝑆𝐴𝑅)

o Frequency – SAR (𝑓 − 𝑆𝐴𝑅)

o Field – SAR (𝐻 − 𝑆𝐴𝑅)

- 3D:

o Frequency – Field – SAR (𝑓 − 𝐻 − 𝑆𝐴𝑅)

o Field – Frequency – SAR (𝐻 − 𝑓 − 𝑆𝐴𝑅)

o Frequency – Particle diameter – SAR (𝑓 − 𝑑𝑝 − 𝑆𝐴𝑅)

o Particle diameter – Frequency – SAR (𝑑𝑝 − 𝑓 − 𝑆𝐴𝑅)

o Field – Particle diameter – SAR (𝐻 − 𝑑𝑝 − 𝑆𝐴𝑅)

o Particle diameter – Field – SAR (𝑑𝑝 − 𝐻 − 𝑆𝐴𝑅)

In these files, the x- and y-axis are chosen separately, but not independently. Starting with the dimension,

user input must be given in top-down order. Without selecting the x-axis, the options in the y-axis (and

z-axis accordingly) are deactivated, stating that user needs to select the x-axis first. The options shown

in the y-axis (and z-axis) depend on the selected option in the x-axis. The way to do this is by building

python closures (or a nested function). Following is an example with pseudo code for a 3D axis:

Chapter 3: Using the files 19

def choosex(x):

 do something

 def choosey(y): # optiony is dependent to chosen optionx

 do something

 def choosez(z): # optionz is dependent to chosen optiony

 do something

 wg.interact(choosez, z = optionz) # optionz is a list with str

 wg.interact(choosey, y = optiony) # optiony is a list with str

wg.interact(choosex, x = optionx) # optionx is a list with str

For 2D axis it works accordingly. The innermost function has access to the variable in the outer function,

but not the other way around. wg.interact() is a function from ipywidgets library for interactive

HTML widgets for Jupyter.

When user plot 2D graph of anything – SAR, there will be 3 lines, each line represents the SAR calculated

from 𝑜𝑛𝑙𝑦 𝜏𝑁, 𝑜𝑛𝑙𝑦 𝜏𝐵, and 𝜏𝑡𝑜𝑡𝑎𝑙 respectively. As the medium only influences 𝜏𝐵 and the influence of 𝜏𝐵

is only at low viscosity medium, some user would want to have a function to differentiate the SAR

calculation from their heat generation mechanism.

The 3D plot assumes high viscosity medium, thus, ignoring the influence of 𝜏𝐵 in the SAR calculation.

This means less user input, as Medium, viscosity and surfactant layer thickness are left out. Material, 𝜌,

𝐾𝑢, and 𝑀𝑠 are the standard user input and depending on the plot chosen, further user input of 𝑓, 𝐻, or

𝑑𝑝 is required. For 𝑑𝑝 as user input, the values will be checked directly, and if it is too large (exponential

factor exceeded 1e50), user will get a warning stating exactly this and will be told the highest available

𝑑𝑝 that is still within the limit of 1e50. Following are the steps done in the allcodes3d to create the

3D graphs:

1. Create arrays for respective x- and y-axes:

a. Frequency 𝑓 : start = 1, end = desired arbitrary limit of frequency.

b. Field 𝐻 : start = 1, end = desired arbitrary limit of field.

c. Particle diameter 𝑑𝑝 : start = 1, end = from Equation (8) calculated 𝑑𝑝(𝑙𝑖𝑚𝑖𝑡)

2. Create mesh grid from the arrays using X, Y = np.meshgrid(X, Y).

3. Calculate SAR.

4. Plot the 3D graph using ax.plot_surface(...).

Making mesh grid from two arrays with the command X, Y = np.meshgrid(X, Y) makes the

shape of both arrays the same to (len(X), len(Y)). This forms the x-y-plane for the plot. The SAR

values are calculated at once as one big array. Mesh grid is required for surface plotting.

Chapter 3: Using the files 20

3.3.4 expsim.ipynb and experiment_simulation.ipynb

These files requires user input for plotting instead of looking up the values in libraries.ipynb. Only

unit conversion and global variables are taken from libraries. Same as userfriendly_quickplot,

these files also require user input. The data types for the user input are the same as explained in the

previous chapter (Chapter 3.3.3). In experiment_simulation.ipynb, the default home view looks

as in Figure 13.

Figure 13: default home view of experiment_simulation.ipynb after "Run All Cells". Hidden ⋯ is %run expsim.ipynb.

In these files, following graphs can be plotted:

- Frequency – SAR (𝑓 − 𝑆𝐴𝑅)

- Field – SAR (𝐻 − 𝑆𝐴𝑅)

- Frequency - Field – SAR (𝑓 − 𝐻 − 𝑆𝐴𝑅)

These are the graphs that are relevant to an actual experiments (other graphs are useful, but irrelevant

for comparison with actual experimental results, for example (𝑑𝑝 − 𝜏) and (𝑑𝑝 − 𝑆𝐴𝑅), as in real-life,

not all 𝑑𝑝 are available.

Under each plot in (𝑓 − 𝑆𝐴𝑅) and (𝐻 − 𝑆𝐴𝑅), there is an IntSlider. Both IntSliders start from 10 and end

at 1000 (kHz for frequency and G for Field), Figure 14.

Figure 14: (left) IntSlider for frequency and (right) IntSlider for field.

User can plot 5 frequencies or 5 field accordingly at once. All 5 input fields can be filled, but do not have

to. By leaving the input field with default value of 0, the program will recognize it as empty and therefore

will be ignored, Figure 15.

Chapter 3: Using the files 21

Figure 15: input fields of field and frequency.

There is a biological limit at how much field and or frequency can be applied before eddy current is

triggered and therefore, heating the surrounding organ, causing major discomfort for patient when the

treatment last for more than one hour [10]. According to Equation (33), if the product of 𝐻𝑓 exceed the

Atkinson Limit, there will be a change in marker from o to x, Figure 16.

Figure 16: (𝐻 − 𝑆𝐴𝑅) plot with various frequencies.

The export function for (𝐻 − 𝑆𝐴𝑅) and (𝑓 − 𝑆𝐴𝑅) will give a full range of 𝐻 and 𝑓 respectively,

independent of the value in the IntSlider.

The (𝑓 − 𝐻 − 𝑆𝐴𝑅) 3D plot in these files is similar to the 3D (𝑓 − 𝐻 − 𝑆𝐴𝑅) plot from

userfriendly_quickplot. The difference is that in experiment_simulation, the influence of

medium is taken into account, while in userfriendly_quickplot, high viscosity medium is

assumed, thus excluding the heat generation mechanism from Brownian relaxation. In

experiment_simulation, the influence of medium cannot be neglected, because during an actual

experiment, water and hexane are often used. These fluids have low viscosities.

3.3.5 list_of_csv.txt

This simple text file helps user to organize their exported .csv data. As the number of exported files are

growing, it becomes more difficult to organize and recognize which data is what graph from which file

Chapter 3: Using the files 22

in which condition. In order to avoid confusion, a text file keeps track of all exported files (write an extra

row in list_of_csv.txt, every time the export button is clicked), Figure 17.

Figure 17: simple list to keep track of exported files.

The first row shows the format how each row will be saved. When Medium=None is written, means that

the medium is neglected.

Chapter 4: Errors and Warning 23

4 Errors and Warning

4.1 name ‘…’ is not defined

At some cases user could get this error, Figure 18.

Figure 18: variable or import not found.

This type of error can only occur in the non-user-friendly file. When an import is not found, it indicates

that either the python libraries is not yet imported, or the kernel was interrupted and has to be rerun. If

variable goes missing, the kernel is either interrupted or the variable does not exist in the above code.

In this case, it is useful to check if there are any typos.

4.2 RuntimeWarning

RuntimeWarning is not an actual error that stops the program from running. It is an indication (warning)

from matplotlib, that currently more than 20 figures are opened at once, Figure 19.

Figure 19: matplotlib RuntimeWarning.

The warning serves only as a reminder, that there are too many opened figures. Whether it might cause

problem depends on the RAM of user’s computer. This warning can as well as be ignored if user think

that no problem would occur and that the computer could handle it. If this is the case, the warning can

be omitted once and for all with the following command written anywhere in the command cell:

plt.rcParams.update({'figure.max_open_warning': 0})

All figures are closed and the Figure number is reset when import matplotlib.pyplot as plt is

called. This can be done by simply calling “Run All Cells” from the toolbar menu (in user-friendly files)

or explicitly rerun the cell that contains the said import (in non-user-friendly files).

Figure 20: RuntimeWarning infinity.

Figure 20 shows what happen if the result of any calculation reached infinity (threshold value set by

python, 1.8e308), and this is encountered in the exponential function. This problem mostly occurs if

user chose particle diameter that are too large. Choose a smaller particle diameter and the warning will

be gone.

Chapter 4: Errors and Warning 24

4.3 IOPub data rate exceeded

Loop is used for iterating over a sequence of command. By doing too many iterations, the limit of the

data rate used could be exceeded, thus, creating an error, Figure 21.

Figure 21: IOPub data rate exceeded.

Different from RuntimeWarning, this is an error that stop the program from running. User can decide, if

the data rate limit is to be increased, or the iteration steps is to be decreased. To increase the data rate

limit, following steps are to be done:

1. Open Anaconda Prompt.

2. Navigate to intended directory.

3. Type: jupyter notebook --NotebookApp.iopub_data_rate_limit=1.0e10 and

press enter

4. Close all related program (JupyterLab browser, Anaconda Navigator, Anaconda Prompt, …)

5. Open program again.

4.4 ModuleNotFoundError

Installation of modules and libraries via pip installer could fail for various reason, e.g. no permission,

wrong version, etc. This could be easily missed, because anaconda prompt is doing a continuous

installation without needing user input. The error report will be visible once the cell in the JupyterLab

is run, Figure 22.

Figure 22: ipyml is not properly installed via pip installer.

In this case, the installation of ipyml should be done directly in the JupyterLab. Anywhere in the cell

the following commands are to be called:

import sys

!{sys.executable} -m pip install --user ipympl

Another module that is common to be missed during the installation via pip is nodejs. In this case,

nodejs can be directly installed to the user computer. The installer can be downloaded from nodejs

official website: https://nodejs.org/en/download/

After installing ipyml and nodejs, the computer(!) must be restarted to finish installation. Restarting

the JupyterLab or the Anaconda Navigator is not enough.

Chapter 5: Outlook 25

5 Outlook

5.1 Potential future improvement

5.1.1 Technical improvement

- The unit of each user input is predetermined. An option to choose the unit could be added as a

dropdown list next to the input field.

- When calculating SAR, 𝜏𝐵 is sometimes ignored, sometimes not. Instead of having a fixed

predetermined calculation step, a checkbox could be added to address this issue.

5.1.2 Calculation (approximation) improvement

- The parameter 𝜏0 is an approximated constant and is set to be 10-9 s. Instead of forcing user to

have a fixed constant value of 𝜏0 for all calculation, this can be added as a user input.

- Magnetic volume fraction can be added as a parameter.

- Hysteresis loss is assumed to be absent for superparamagnetic nanoparticle, while in reality, this

is not the case. Hysteresis loss could be calculated separately and at the end added to the

calculation as a correction factor.

- Langevin equation in the Brownian motion is ignored. This issue could be addressed to improve

the calculation.

- The density 𝜌 always assumes the density of the magnetic nanoparticle, neglecting the fact, that

the fluid actually has a part in the density, thus deviating from solely the density of the

nanoparticle. Together with magnetic volume fraction, the real density can be calculated.

5.2 Unsolved technical problems

- The buttons available for single plot 2D (𝑓 − 𝑆𝐴𝑅𝑚𝑎𝑥) and (𝐻 − 𝑆𝐴𝑅𝑚𝑎𝑥), Figure 7, is generated

manually. While it is possible to change the value from libraries, the number of field and or

frequency cannot the increased or decreased.

- There is no export function for 2D multi-plot (𝑑𝑝 − 𝜏) and 3D compare (𝑓 − 𝑆𝐴𝑅 − 𝑑𝑝) plot. The

values are plotted without being saved. Because no values are saved, there are no data that can

be exported.

- The database is saved as an .ipynb files. This is a little bit impractical and non-universal way

of storing database. A common filetype to write and store database is .csv. A problem that arises

while importing .csv files into .ipynb files is the local directory of the .csv files themselves. As

the directory of the original .csv files must be given when importing, this is not possible without

using cloud-based file. TU Darmstadt GitLab instance could be the solution of this problem.

Reference 26

6 Reference

[1] https://pandas.pydata.org/ (retrieved: March 29, 2021)

[2] https://numpy.org/ (retrieved: March 29, 2021)

[3] https://matplotlib.org/ (retrieved: March 29, 2021)

[4] https://anaconda.org/anaconda/ipywidgets (retrieved: March 29, 2021)

[5] https://ipywidgets.readthedocs.io/en/stable/ (retrieved: March 29, 2021)

[6] https://docs.python.org/3/library/time.html (retrieved: March 29, 2021)

[7] W.F. Brown, J. Appl. Phys., 1959, 30, 130

[8] F.H. MacDougall, J. Frenkel., J. Phys. Colloid Chem., 1947, 51, 1032.

[9] J. Carrey, B. Mehdaoui, M. Respaud, Journal of Applied Physics, 2011, 109, 83921

[10] W. J. Atkinson, I. A. Brezovich, D. P. Chakraborty, IEEE Transactions on Biomedical

Engineering, 1984, 31, 70.

[11] A. Jordan, K. Maier-Hauff, et. al., Onkologe, 2007, 13, 894.

https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
https://anaconda.org/anaconda/ipywidgets
https://ipywidgets.readthedocs.io/en/stable/
https://docs.python.org/3/library/time.html

Table of Figures 27

Table of Figures

Figure 1: JupyterLab and Jupyter Notebook from Anaconda Navigator. .. 3
Figure 2: unit conversion stored as pandas data frame and its output. .. 4
Figure 3: navigation bar of matplotlib widget. .. 10
Figure 4: clicked export button. .. 10
Figure 5: export function in libraries.ipynb. .. 11
Figure 6: default home view of userfriendly_plotter.ipynb after "Run All Cells". Hidden ⋯ is

%run allcodes.ipynb. .. 13

Figure 7: ToggleButton for show/hide respective plot. .. 14
Figure 8: buttons found in multi plot 2D 𝑑𝑝 − 𝜏.. 14
Figure 9: multi plot 2D 𝑀𝑠 − 𝑆𝐴𝑅𝑚𝑎𝑥 at at 𝑓 = 402 𝑘𝐻𝑧 and 𝐻 = 350 𝐺. ... 15
Figure 10: functionalities offered in 𝑓 − 𝑆𝐴𝑅 − 𝑑𝑝 3D graph, high viscosity medium is assumed. 17
Figure 11: sample 𝑓 − 𝑆𝐴𝑅 − 𝑑𝑝 plot containing multiple materials. ... 17
Figure 12: default home view of userfriendly_quickplot.ipynb after "Run All Cells". Hidden ⋯ is %run

allcodes3d.ipynb. .. 18

Figure 13: default home view of experiment_simulation.ipynb after "Run All Cells". Hidden ⋯ is %run

expsim.ipynb. ... 20

Figure 14: (left) IntSlider for frequency and (right) IntSlider for field. ... 20
Figure 15: input fields of field and frequency.. 21
Figure 16: 𝐻 − 𝑆𝐴𝑅 plot with various frequencies. .. 21
Figure 17: simple list to keep track of exported files. .. 22
Figure 18: variable or import not found. ... 23
Figure 19: matplotlib RuntimeWarning. ... 23
Figure 20: RuntimeWarning infinity. .. 23
Figure 21: IOPub data rate exceeded. ... 24
Figure 22: ipyml is not properly installed via pip installer. .. 24

List of abbreviation 28

List of abbreviation

𝑑𝑝 particle diameter

𝑑𝑠 surfactant layer thickness

𝜂 viscosity

𝑓 frequency

𝐻 field

ipynb ipython notebook

𝑘𝐵 Boltzmann constant

𝐾𝑢 anisotropy constant

MFH Magnetic Fluid Hyperthermia

𝑀𝑠 saturation magnetization

P power loss density

pip preferred installer program / pip installs packages / pip installs python

𝜌 density

SAR Specific Absorption Rate

𝜏 relaxation time

𝑇 temperature

