TUdatalib Upgrade

Am 2. Juni erfolgte ein TUdatalib Upgrade auf eine neue Softwareversion. Dieses Upgrade bringt wichtige Neuerungen mit sich. Eine Übersicht finden Sie in der Dokumentation
On June 2nd, TUdatalib was upgraded to a new software version. This upgrade introduced major changes to the system. Please see our documentation for an overview.

 

Content-Adaptive Downsampling in Convolutional Neural Networks

datacite.relation.isDescribedBy https://arxiv.org/abs/2305.09504
dc.contributor.author Hesse, Robin
dc.contributor.author Schaub-Meyer, Simone
dc.contributor.author Roth, Stefan
dc.date.accessioned 2025-04-03T14:31:17Z
dc.date.available 2025-04-03T14:31:17Z
dc.date.created 2023-06
dc.date.issued 2025-04-03
dc.description Many convolutional neural networks (CNNs) rely on progressive downsampling of their feature maps to increase the network's receptive field and decrease computational cost. However, this comes at the price of losing granularity in the feature maps, limiting the ability to correctly understand images or recover fine detail in dense prediction tasks. To address this, common practice is to replace the last few downsampling operations in a CNN with dilated convolutions, allowing to retain the feature map resolution without reducing the receptive field, albeit increasing the computational cost. This allows to trade off predictive performance against cost, depending on the output feature resolution. By either regularly downsampling or not downsampling the entire feature map, existing work implicitly treats all regions of the input image and subsequent feature maps as equally important, which generally does not hold. We propose an adaptive downsampling scheme that generalizes the above idea by allowing to process informative regions at a higher resolution than less informative ones. In a variety of experiments, we demonstrate the versatility of our adaptive downsampling strategy and empirically show that it improves the cost-accuracy trade-off of various established CNNs. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4534
dc.language.iso en de_DE
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject deep learning de_DE
dc.subject semantic segmentation de_DE
dc.subject keypoint estimation de_DE
dc.subject efficiency de_DE
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Content-Adaptive Downsampling in Convolutional Neural Networks de_DE
dc.type Software de_DE
dc.type Model de_DE
dcterms.accessRights openAccess
person.identifier.orcid 0000-0003-0458-5483
person.identifier.orcid 0000-0001-8644-1074
person.identifier.orcid 0000-0001-9002-9832
tuda.project EC/H2020 | 866008 | RED
tuda.project HMWK | 500/10.001-(00012) | TAM - TP Roth
tuda.project HMWK | 519/03/06.001-(0010) | WhiteBox - TP Roth
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 7 of 7
NameDescriptionSizeFormat
cad-main.zipTraining and inference code7.46 MBZIP-Archivdateien Download
best_deeplabv3_ad_resnet101_cityscapes_modeend2end_seed0_default_tau1.0_lowresactive0.5_w_downsample_shared_andbatchnorm_shared.pthModel weights461.71 MBUnknown data format Download
best_deeplabv3_batch_ap_resnet101_cityscapes_os8_modeedges_os16till8_seed2_trimapwidth11_threshold0.15.pthModel weights448.07 MBUnknown data format Download
best_deeplabv3_resnet101_cityscapes_os8_seed1.pthModel weights448.07 MBUnknown data format Download
best_deeplabv3_resnet101_cityscapes_os16_seed1.pthModel weights448.07 MBUnknown data format Download
d2_tf.pthModel weights29.13 MBUnknown data format Download
inference_results.zipInference results1.01 GBZIP-Archivdateien Download

Collections