Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Boosting Unsupervised Semantic Segmentation with Principal Mask Proposals

datacite.relation.isDescribedBy https://arxiv.org/abs/2404.16818
datacite.relation.isDescribedBy https://openreview.net/forum?id=UawaTQzfwy
datacite.relation.isDescribedBy https://github.com/visinf/primaps
dc.contributor.author Hahn, Oliver
dc.contributor.author Araslanov, Nikita
dc.contributor.author Schaub-Meyer, Simone
dc.contributor.author Roth, Stefan
dc.date.accessioned 2025-04-03T11:44:00Z
dc.date.available 2025-04-03T11:44:00Z
dc.date.created 2024-09
dc.date.issued 2025-04-03
dc.description Unsupervised semantic segmentation aims to automatically partition images into semantically meaningful regions by identifying global semantic categories within an image corpus without any form of annotation. Building upon recent advances in self-supervised representation learning, we focus on how to leverage these large pre-trained models for the downstream task of unsupervised segmentation. We present PriMaPs – Principal Mask Proposals – decomposing images into semantically meaningful masks based on their feature representation. This allows us to realize unsupervised semantic segmentation by fitting class prototypes to PriMaPs with a stochastic expectation-maximization algorithm, PriMaPs-EM. Despite its conceptual simplicity, PriMaPs-EM leads to competitive results across various pre-trained backbone models, including DINO and DINOv2, and across different datasets, such as Cityscapes, COCO-Stuff, and Potsdam-3. Importantly, PriMaPs-EM is able to boost results when applied orthogonally to current state-of-the-art unsupervised semantic segmentation pipelines. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4530
dc.language.iso en de_DE
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject Semantic Segmentation de_DE
dc.subject Self-Supervised de_DE
dc.subject Unsupervised Semantic Segmentation de_DE
dc.subject Deep Learning de_DE
dc.subject.classification 4.43-04
dc.subject.ddc 004
dc.title Boosting Unsupervised Semantic Segmentation with Principal Mask Proposals de_DE
dc.type Software de_DE
dcterms.accessRights openAccess
person.identifier.orcid 0009-0008-6164-1035
person.identifier.orcid 0000-0002-9424-8837
person.identifier.orcid 0000-0001-8644-1074
person.identifier.orcid 0000-0001-9002-9832
tuda.project EC/H2020 | 866008 | RED
tuda.project HMWK | 500/10.001-(00111) | 3AI - TP Roth
tuda.project HMWK | 500/10.001-(00012) | TAM - TP Roth
tuda.project HMWK | 500/10.001-(00111) | 3AI-NWG Schaub-Meyer
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 2 of 2
NameDescriptionSizeFormat
primaps-code.zip3.62 MBZIP-Archivdateien Download
primaps_checkpoints.zip2.5 GBZIP-Archivdateien Download

Collections