Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Pose Prediction for Mobile Ground Robots Evaluation Dataset

datacite.relation.isDerivedFrom https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3973
datacite.relation.isDescribedBy https://doi.org/10.1109/SSRR53300.2021.9597690
dc.contributor.author Oehler, Martin
dc.contributor.author Daun, Kevin
dc.contributor.author Marius, Schnaubelt
dc.contributor.author von Stryk, Oskar
dc.date.accessioned 2023-10-20T14:37:41Z
dc.date.available 2023-10-20T14:37:41Z
dc.date.created 2023
dc.date.issued 2023-10-20
dc.description This dataset provides ground truth robot trajectories in rough terrain for the evaluation of pose prediction approaches for mobile ground robots. It is composed of six datasets in four different scenarios of the RoboCup Rescue Robot League (RRL): * Continuous Ramps: Series of double ramps * Curb: Three 10 x 10 cm bars on flat ground * Hurdles: Steps of varying heights * Elevated Ramps: Boxes of varying heights with sloped tops Four datasets were created in the Gazebo simulator and two were recorded on a real robot platform in the DRZ Living Lab. Each dataset contains the ground truth robot poses of a path through the arena. In Gazebo, the ground truth poses are provided by the simulator. In the DRZ Living Lab, a high-performance Qualisys optical motion capture system has been used. The data has been recorded using the tracked robot "Asterix". It is a highly mobile platform with main tracks and coupled flippers on the front and back and a chassis footprint of 72 × 52 cm. The data is provided as Bagfiles for ROS and is intended to be used with the package [hector_pose_prediction_benchmark](https://github.com/tu-darmstadt- ros-pkg/hector_pose_prediction_benchmark). This dataset is published as part of the publication: Oehler, Martin, et al. "Accurate Pose Prediction on Signed Distance Fields for Mobile Ground Robots in Rough Terrain." 2023 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2023. See the provided README for further information. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3978
dc.rights.licenseCC-BY-4.0 (https://creativecommons.org/licenses/by/4.0)
dc.subject Robotics de_DE
dc.subject Rescue Robot de_DE
dc.subject Pose Prediction de_DE
dc.subject Mobile Robot de_DE
dc.subject Bagfile de_DE
dc.subject.classification 4.43-04
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Pose Prediction for Mobile Ground Robots Evaluation Dataset de_DE
dc.type Other de_DE
dcterms.accessRights openAccess
person.identifier.orcid 0000-0002-3148-7806
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
tuda.history.classification Version=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung
tuda.project Bund/BMBF | 13N16274 | KIARA
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 1 of 1
NameDescriptionSizeFormat
pose_prediction_benchmark_dataset.zip631.65 MBZIP-Archivdateien Download