TUdatalib Upgrade

Am 2. Juni erfolgte ein TUdatalib Upgrade auf eine neue Softwareversion. Dieses Upgrade bringt wichtige Neuerungen mit sich. Eine Übersicht finden Sie in der Dokumentation
On June 2nd, TUdatalib was upgraded to a new software version. This upgrade introduced major changes to the system. Please see our documentation for an overview.

 

LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training

dc.contributor.author Kreutz, Thomas
dc.contributor.author Lemke, Jens
dc.contributor.author Mühlhäuser, Max
dc.contributor.author Sanchez Guinea, Alejandro
dc.date.accessioned 2024-09-02T09:42:47Z
dc.date.available 2024-08-30T15:05:57Z
dc.date.available 2024-09-02T09:40:25Z
dc.date.available 2024-09-02T09:42:47Z
dc.date.created 2024
dc.date.issued 2024-09-02
dc.description In this paper, we propose LiOn-XA, an unsupervised domain adaptation (UDA) approach that combines LiDAR-Only Cross-Modal (X) learning with Adversarial training for 3D LiDAR point cloud semantic segmentation to bridge the domain gap arising from environmental and sensor setup changes. Unlike existing works that exploit multiple data modalities like point clouds and RGB image data, we address UDA in scenarios where RGB images might not be available and show that two distinct LiDAR data representations can learn from each other for UDA. More specifically, we leverage 3D voxelized point clouds to preserve important geometric structure in combination with 2D projection-based range images that provide information such as object orientations or surfaces. To further align the feature space between both domains, we apply adversarial training using both features and predictions of both 2D and 3D neural networks. Our experiments on 3 real-to-real adaptation scenarios demonstrate the effectiveness of our approach, achieving new state-of-the-art performance when compared to previous uni- and multi-model UDA methods. Our source code is publicly available at https://github.com/JensLe97/lion-xa. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4327.4
dc.language.iso en de_DE
dc.rights.licenseODC-BY-1.0 (https://opendatacommons.org/licenses/by/1.0/)
dc.subject Unsupervised Domain Adaptation de_DE
dc.subject LiDAR Semantic Segmentation de_DE
dc.subject.classification 4.43-04
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training de_DE
dc.type Model de_DE
tuda.history.classification Version=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 4 of 4
NameDescriptionSizeFormat
Full_Quantitative_Results.zip78.28 KBZIP-Archivdateien Download
kitti2nuscenes.zip6.29 GBZIP-Archivdateien Download
kitti2poss.zip2.69 GBZIP-Archivdateien Download
usa2singapore.zip4.06 GBZIP-Archivdateien Download

Collections

Version History

Now showing 1 - 4 of 4
VersionDateSummary
2024-12-10 15:42:42
quantitative results and models for code release
4*
2024-09-02 11:42:04
data only
2024-09-02 10:02:43
Models hochladen
2024-08-30 17:05:57
* Selected version