Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

GREF Dataset: On the benefit of FMG and EMG sensor fusion for gesture recognition using cross-subject validation

datacite.relation.references https://doi.org/10.1109/TNSRE.2025.3543649
dc.contributor.author Rohr, Maurice
dc.contributor.author Haidamous, Jad
dc.contributor.author Schäfer, Niklas
dc.contributor.author Schaumann, Stephan
dc.contributor.author Latsch, Bastian
dc.contributor.author Kupnik, Mario
dc.contributor.author Hoog Antink, Christoph
dc.date.accessioned 2025-04-02T13:57:15Z
dc.date.available 2025-04-02T13:57:15Z
dc.date.created 2024
dc.date.issued 2025-04-02
dc.description The Gesture Recognition using EMG and FMG TU Darmstadt (GREFTUD) dataset contains labeled recordings of electromyography (EMG) and forcemyography recordings of 13 healthy subjects, each of whom performed 66 distinct hand movements. The movements were labeled using a high speed camera and the start and end time (in ms) of each movement were noted manually. The dataset was presented in our paper "On the Benefit of FMG and EMG Sensor Fusion for Gesture Recognition Using Cross-Subject Validation". The file "dataset.hdf5" contains the complete dataset, including the manual labels, but no video data. An example on how to use the dataset can be found in "hdf5_example.ipynb". de_DE
dc.description.version 1.0 de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4528
dc.identifier.uri https://doi.org/10.48328/tudatalib-1707
dc.language.iso en de_DE
dc.rights.licenseCC-BY-4.0 (https://creativecommons.org/licenses/by/4.0)
dc.subject Electromyography (EMG) de_DE
dc.subject Ferroelectrets de_DE
dc.subject Force myography (FMG) de_DE
dc.subject Gesture recognition de_DE
dc.subject Sensor fusion de_DE
dc.subject.classification 4.41-06
dc.subject.ddc 621.3
dc.title GREF Dataset: On the benefit of FMG and EMG sensor fusion for gesture recognition using cross-subject validation de_DE
dc.type Dataset de_DE
dc.type Software de_DE
dcterms.accessRights openAccess
person.identifier.orcid 0000-0002-6053-6558
person.identifier.orcid 0009-0005-9768-4916
person.identifier.orcid 0000-0001-5433-0273
person.identifier.orcid 0009-0001-2705-9833
person.identifier.orcid 0000-0001-9929-5694
person.identifier.orcid 0000-0003-2287-4481
person.identifier.orcid 0000-0001-7948-8181
tuda.project DFG | GRK2761 | TP_Kupnik_GRK_2761
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 4 of 4
NameDescriptionSizeFormat
README.mdInstructions and further information2.92 KBUnknown data format Download
requirements.txtRequired python packages34 BPlain Text Download
hdf5_example.ipynbExample code5.83 MBUnknown data format Download
dataset.hdf5Structured dataset in HDF5 format658.16 MB Download

Collections