Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Rail Vehicle Positioning Data Set: Lucy, March 2019

dc.contributor.author Winter, Hanno
dc.date.accessioned 2020-11-27T07:24:17Z
dc.date.available 2020-11-27T07:24:17Z
dc.date.created 2020-12-10
dc.date.issued 2020-11-27
dc.description **Key facts** * **Fields of application:** railway positioning, sensor fusion, sensor models * **Available data:** 1x GNSS, 1x IMU * **Rail-track characteristics:** ≈870 km (on convetional lines) * **Available reference data:** Open GNSS/IMU EKF-fusion solution (loosely coupled) * **Structure:** This data set follows the data sharing principles of the LRT (localization reference train) initiative that are available at [lrt- initiative.org](https://lrt- initiative.org/2020_05_28_lrtdatasetguidelines_v1_2/). **About** This data set can be used for rail vehicle positioning experiments. It contains measurements of an 6-DOF IMU and a GNSS receiver. The senors were mounted on a regular rail vehicle during a trip from Chemnitz (Germany, Saxony) to Neuffen (Germany, Baden-Württemberg) and back. The recorded data have been pre-processed to have common time and coordinate frames. Furthermore, a simple loosely coupled GNSS/IMU positioning solution is provided which can be used as a baseline for more advanced fusion approaches. All MATLAB scripts used to process the raw data and to calculate the GNSS/IMU positioning solution are provided within the data set. The data can be used as a starting point for own work. Special features of this data set are its overall length (870km, 16hrs) with continuous journey sections of over 1h and its test-track (conventional line). **Similar data sets** * <https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2292.2> * <https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2530> **Scripts** * <https://github.com/tud-rmr/railway_dataset_nt_20190311> **BibTex** @Misc{WinterRailDataSetMarch2019, title = {Rail Vehicle Positioning Data Set: Lucy, March 2019}, author = {Winter, Hanno}, doi = {10.25534/tudatalib-359}, publisher = {Technische Universität Darmstadt}, year = {2020}, } en_US
dc.description.version initial version en_US
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2529
dc.identifier.uri https://doi.org/10.25534/tudatalib-359
dc.language.iso en en_US
dc.rights.licenseCC-BY-4.0 (https://creativecommons.org/licenses/by/4.0)
dc.subject Railway en_US
dc.subject Positioning en_US
dc.subject Data Set en_US
dc.subject Train en_US
dc.subject Localization en_US
dc.subject GNSS en_US
dc.subject IMU en_US
dc.subject Sensor Fusion en_US
dc.subject.classification 4.41-04
dc.subject.ddc 380
dc.title Rail Vehicle Positioning Data Set: Lucy, March 2019 en_US
dc.type Dataset en_US
dc.type Software en_US
dcterms.accessRights openAccess
person.identifier.orcid 0000-0002-0429-1787
tuda.history.classification Version=2016-2020;407-04 Verkehrs- und Transportsysteme, Logistik, Intelligenter und automatisierter Verkehr;

Files

Original bundle

Now showing 1 - 1 of 1
NameDescriptionSizeFormat
2019-03-11_LucyMarch2019_v1.zip5.43 GBZIP-Archivdateien Download