TUdatalib Upgrade

Am 2. Juni erfolgte ein TUdatalib Upgrade auf eine neue Softwareversion. Dieses Upgrade bringt wichtige Neuerungen mit sich. Eine Übersicht finden Sie in der Dokumentation
On June 2nd, TUdatalib was upgraded to a new software version. This upgrade introduced major changes to the system. Please see our documentation for an overview.

 

Rail Vehicle Positioning Data Set: Lucy, March 2019

dc.contributor.author Winter, Hanno
dc.date.accessioned 2020-11-27T07:24:17Z
dc.date.available 2020-11-27T07:24:17Z
dc.date.created 2020-12-10
dc.date.issued 2020-11-27
dc.description **Key facts** * **Fields of application:** railway positioning, sensor fusion, sensor models * **Available data:** 1x GNSS, 1x IMU * **Rail-track characteristics:** ≈870 km (on convetional lines) * **Available reference data:** Open GNSS/IMU EKF-fusion solution (loosely coupled) * **Structure:** This data set follows the data sharing principles of the LRT (localization reference train) initiative that are available at [lrt- initiative.org](https://lrt- initiative.org/2020_05_28_lrtdatasetguidelines_v1_2/). **About** This data set can be used for rail vehicle positioning experiments. It contains measurements of an 6-DOF IMU and a GNSS receiver. The senors were mounted on a regular rail vehicle during a trip from Chemnitz (Germany, Saxony) to Neuffen (Germany, Baden-Württemberg) and back. The recorded data have been pre-processed to have common time and coordinate frames. Furthermore, a simple loosely coupled GNSS/IMU positioning solution is provided which can be used as a baseline for more advanced fusion approaches. All MATLAB scripts used to process the raw data and to calculate the GNSS/IMU positioning solution are provided within the data set. The data can be used as a starting point for own work. Special features of this data set are its overall length (870km, 16hrs) with continuous journey sections of over 1h and its test-track (conventional line). **Similar data sets** * <https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2292.2> * <https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2530> **Scripts** * <https://github.com/tud-rmr/railway_dataset_nt_20190311> **BibTex** @Misc{WinterRailDataSetMarch2019, title = {Rail Vehicle Positioning Data Set: Lucy, March 2019}, author = {Winter, Hanno}, doi = {10.25534/tudatalib-359}, publisher = {Technische Universität Darmstadt}, year = {2020}, } en_US
dc.description.version initial version en_US
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2529
dc.identifier.uri https://doi.org/10.25534/tudatalib-359
dc.language.iso en en_US
dc.rights.licenseCC-BY-4.0 (https://creativecommons.org/licenses/by/4.0)
dc.subject Railway en_US
dc.subject Positioning en_US
dc.subject Data Set en_US
dc.subject Train en_US
dc.subject Localization en_US
dc.subject GNSS en_US
dc.subject IMU en_US
dc.subject Sensor Fusion en_US
dc.subject.classification 4.41-04
dc.subject.ddc 380
dc.title Rail Vehicle Positioning Data Set: Lucy, March 2019 en_US
dc.type Dataset en_US
dc.type Software en_US
dcterms.accessRights openAccess
person.identifier.orcid 0000-0002-0429-1787
tuda.history.classification Version=2016-2020;407-04 Verkehrs- und Transportsysteme, Logistik, Intelligenter und automatisierter Verkehr;

Files

Original bundle

Now showing 1 - 1 of 1
NameDescriptionSizeFormat
2019-03-11_LucyMarch2019_v1.zip5.43 GBZIP-Archivdateien Download