Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Actor-critic Instance Segmentation

datacite.relation.isDescribedBy https://arxiv.org/abs/1904.05126
dc.contributor.author Araslanov, Nikita
dc.contributor.author Rothkopf, Constantin
dc.contributor.author Roth, Stefan
dc.date.accessioned 2021-12-22T11:09:38Z
dc.date.available 2021-12-22T11:09:38Z
dc.date.created 2019-06
dc.date.issued 2021-12-22
dc.description Most approaches to visual scene analysis have emphasised parallel processing of the image elements. However, one area in which the sequential nature of vision is apparent, is that of segmenting multiple, potentially similar and partially occluded objects in a scene. In this work, we revisit the recurrent formulation of this challenging problem in the context of reinforcement learning. Motivated by the limitations of the global max-matching assignment of the ground-truth segments to the recurrent states, we develop an actor-critic approach in which the actor recurrently predicts one instance mask at a time and utilises the gradient from a concurrently trained critic network. We formulate the state, action, and the reward such as to let the critic model long-term effects of the current prediction and incorporate this information into the gradient signal. Furthermore, to enable effective exploration in the inherently high-dimensional action space of instance masks, we learn a compact representation using a conditional variational auto-encoder. We show that our actor-critic model consistently provides accuracy benefits over the recurrent baseline on standard instance segmentation benchmarks. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3368
dc.language.iso en de_DE
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject actor-critic de_DE
dc.subject reinforcement learning de_DE
dc.subject instance segmentation de_DE
dc.subject.classification 4.43-04
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Actor-critic Instance Segmentation de_DE
dc.type Software de_DE
dcterms.accessRights openAccess
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
tuda.history.classification Version=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 4 of 4
NameDescriptionSizeFormat
acis-code.zipTraining and inference code (Lua Torch)123.16 KBZIP-Archivdateien Download
results.zipInference results96.3 MBZIP-Archivdateien Download
snapshots.zipModel parameters (snapshots)1.07 GBZIP-Archivdateien Download
datasets.zipDatasets (CVPPP and KITTI)2.97 GBZIP-Archivdateien Download

Collections