TUdatalib Upgrade

Am 2. Juni erfolgte ein TUdatalib Upgrade auf eine neue Softwareversion. Dieses Upgrade bringt wichtige Neuerungen mit sich. Eine Übersicht finden Sie in der Dokumentation
On June 2nd, TUdatalib was upgraded to a new software version. This upgrade introduced major changes to the system. Please see our documentation for an overview.

 

Classification of gravure printed patterns using convolutional neural networks (Python code)

datacite.relation.isSupplementTo https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3841
dc.contributor.author Rothmann-Brumm, Pauline
dc.date.accessioned 2023-05-16T11:26:33Z
dc.date.accessioned 2023-06-13T13:58:31Z
dc.date.available 2023-05-16T11:26:33Z
dc.date.available 2023-06-13T13:58:31Z
dc.date.created 2023
dc.date.issued 2023-05-16
dc.description This dataset contains Python code ('code_DeepLearn_ImgClass.zip') for automated classification of gravure printed patterns from the [HYPA-p](https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3841) dataset. The developed algorithm performs supervised deep learning of convolutional neural networks (CNNs) on labeled data ('CNN_dataset.zip'), i.e. selected, labeled 'S-subfields' from the HYPA-p dataset. 'CNN_dataset.zip' is a subset from the images in the folder 'labeled_data.zip', which can be created with the provided Python code. PyTorch is used as a deep learning framework. The Python code yields trained CNNs, which can be used for automated classification of unlabeled data from the HYPA-p dataset. Well-known, pre-trained network architectures like Densenet-161 or MobileNetV2 are used as a starting point for training. Several trained CNNs are included in this submission, see 'trained_CNN_models.zip'. Further information can be found in the dissertation of Pauline Rothmann-Brumm (2023) and in the provided README-file. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3838
dc.identifier.uri https://doi.org/10.48328/tudatalib-1147
dc.language.iso en de_DE
dc.rights.licenseCC-BY-NC-4.0 (https://creativecommons.org/licenses/by-nc/4.0)
dc.subject Python code de_DE
dc.subject pattern classification de_DE
dc.subject hydrodynamic pattern formation de_DE
dc.subject deep learning de_DE
dc.subject convolutional neural networks de_DE
dc.subject gravure printing de_DE
dc.subject.classification 4.21-03
dc.subject.classification 4.22-03
dc.subject.classification 4.31-03
dc.subject.ddc 660
dc.subject.ddc 620
dc.title Classification of gravure printed patterns using convolutional neural networks (Python code) de_DE
dc.type Text de_DE
dc.type Software de_DE
dc.type Image de_DE
dc.type Model de_DE
dcterms.accessRights openAccess
person.identifier.orcid 0000-0002-8220-0676
tuda.history.classification Version=2020-2024;403-03 Mechanische Verfahrenstechnik
tuda.history.classification Version=2020-2024;404-03 Strömungsmechanik
tuda.history.classification Version=2020-2024;405-03 Beschichtungs- und Oberflächentechnik
tuda.project DFG | SFB1194 | TP C01 Dörsam
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 5 of 5
NameDescriptionSizeFormat
README_DeepLearn_ImgClass.txt6.62 KBPlain Text Download
code_DeepLearn_ImgClass.zip66.46 KBZIP-Archivdateien Download
CNN_dataset.zip4.6 GBZIP-Archivdateien Download
labeled_data.zip10.93 GBZIP-Archivdateien Download
trained_CNN_models.zip741.15 MBZIP-Archivdateien Download

Collections