Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

eacl2026-assessing-paper-novelty

dc.contributor.author Mohammed Afzal, Osama
dc.contributor.author Nakov, Preslav
dc.contributor.author Hope, Tom
dc.contributor.author Gurevych, Iryna
dc.date.accessioned 2026-01-16T11:34:26Z
dc.date.created 2026-01-16
dc.date.issued 2026-01-16
dc.description Dataset for evaluating automated novelty assessment in academic papers. Contains 182 ICLR submissions with human annotations, LLM-derived novelty assessments from reviewer critiques, and system-generated novelty analyses including research landscape overviews and novelty delta comparisons with prior work. This dataset is a supplement to the paper: Beyond "Not Novel Enough": Enriching Scholarly Critique with LLM-Assisted Feedback. Please refer to the paper for more details.
dc.description.version 1.0
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4988
dc.language.iso en
dc.rights.licenseCC-BY-NC-4.0 (https://creativecommons.org/licenses/by-nc/4.0)
dc.subject Peer Review
dc.subject AI for Science
dc.subject.classification 4.43-04
dc.subject.ddc 004
dc.title eacl2026-assessing-paper-novelty
dc.type Text
dcterms.accessRights openAccess
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
tuda.agreements true
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 1 of 1
NameDescriptionSizeFormat
data_novelty_assessment.zip209.42 MBZIP-Archivdateien Download

Collections