Environmental Conditions in Lidar and Radar Data

dc.contributor.author Linnhoff, Clemens
dc.contributor.author Hofrichter, Kristof
dc.contributor.author Elster, Lukas
dc.contributor.author Rosenberger, Philipp
dc.contributor.author Winner, Hermann
dc.date.accessioned 2022-06-29T07:25:28Z
dc.date.available 2022-06-29T07:25:28Z
dc.date.created 2022
dc.date.issued 2022-06-29
dc.description Safety validation of automated driving functions is a major challenge that is partly tackled by means of simulation-based testing. The virtual validation approach always entails the modeling of automotive perception sensors and their environment. In the real world, these sensors are exposed to adverse influences by environmental conditions like rain, fog, snow etc. Therefore, such influences need to be reflected in the simulation models. In this publication, a novel data set is introduced. This data set contains lidar data with synchronized reference measurements of weather conditions from a stationary long-term experiment. Recorded weather conditions comprise fog, rain, snow and direct sun light. Next to the named funding projects, the dataset was also funded by VIVID, promoted by the German Federal Ministry of Education and Research, based on a decision of the Deutsche Bundestag. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3507
dc.identifier.uri https://doi.org/10.48328/tudatalib-900
dc.rights.licenseCC-BY-4.0 (https://creativecommons.org/licenses/by/4.0)
dc.subject Automated Driving de_DE
dc.subject Lidar de_DE
dc.subject Radar de_DE
dc.subject Weather de_DE
dc.subject Fog de_DE
dc.subject Rain de_DE
dc.subject Snow de_DE
dc.subject Sun de_DE
dc.subject Perception de_DE
dc.subject Simulation de_DE
dc.subject.classification 4.41-04
dc.subject.ddc 380
dc.title Environmental Conditions in Lidar and Radar Data de_DE
dc.type Dataset de_DE
dcterms.accessRights openAccess
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid 0000-0003-3309-0623
person.identifier.orcid 0000-0002-9824-3195
tuda.history.classification Version=2020-2024;407-04 Verkehrs- und Transportsysteme, Intelligenter und automatisierter Verkehr
tuda.project TÜV Rheinland | 19A19004E | SETLevel4to5
tuda.project Bund/BMWi | 19A19002S | VVMethoden
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 20 of 47
NameDescriptionSizeFormat
snow.z014 GBUnknown data format Download
snow.z024 GBUnknown data format Download
snow.z034 GBUnknown data format Download
snow.z044 GBUnknown data format Download
snow.zip347.96 MBZIP-Archivdateien Download
sun.zip3.88 GBZIP-Archivdateien Download
rain.z014 GBUnknown data format Download
rain.z024 GBUnknown data format Download
rain.z034 GBUnknown data format Download
rain.z044 GBUnknown data format Download
rain.z054 GBUnknown data format Download
rain.z064 GBUnknown data format Download
rain.z074 GBUnknown data format Download
rain.z084 GBUnknown data format Download
rain.z094 GBUnknown data format Download
rain.z104 GBUnknown data format Download
rain.z114 GBUnknown data format Download
rain.z124 GBUnknown data format Download
rain.z134 GBUnknown data format Download
rain.z144 GBUnknown data format Download

Collections