Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Semantic Self-adaptation: Enhancing Generalization with a Single Sample

datacite.relation.isDescribedBy https://arxiv.org/abs/2208.05788
datacite.relation.isDescribedBy https://openreview.net/forum?id=ILNqQhGbLx
datacite.relation.isDescribedBy https://github.com/visinf/self-adaptive?tab=readme-ov-file
dc.contributor.author Bahmani, Sherwin
dc.contributor.author Hahn, Oliver
dc.contributor.author Zamfir, Eduard
dc.contributor.author Araslanov, Nikita
dc.contributor.author Cremers, Daniel
dc.contributor.author Roth, Stefan
dc.date.accessioned 2025-04-03T14:30:07Z
dc.date.available 2025-04-03T14:30:07Z
dc.date.created 2023-07
dc.date.issued 2025-04-03
dc.description The lack of out-of-domain generalization is a critical weakness of deep networks for semantic segmentation. Previous studies relied on the assumption of a static model, i. e., once the training process is complete, model parameters remain fixed at test time. In this work, we challenge this premise with a self-adaptive approach for semantic segmentation that adjusts the inference process to each input sample. Self-adaptation operates on two levels. First, it fine-tunes the parameters of convolutional layers to the input image using consistency regularization. Second, in Batch Normalization layers, self-adaptation interpolates between the training and the reference distribution derived from a single test sample. Despite both techniques being well known in the literature, their combination sets new state-of-the-art accuracy on synthetic-to-real generalization benchmarks. Our empirical study suggests that self-adaptation may complement the established practice of model regularization at training time for improving deep network generalization to out-of-domain data. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4533
dc.language.iso en de_DE
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject Semantic Segmentation de_DE
dc.subject Domain Generalisation de_DE
dc.subject Deep Learning de_DE
dc.subject Computer Vision de_DE
dc.subject.classification 4.43-04
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Semantic Self-adaptation: Enhancing Generalization with a Single Sample de_DE
dc.type Software de_DE
dcterms.accessRights openAccess
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid 0009-0008-6164-1035
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid 0000-0002-9424-8837
person.identifier.orcid 0000-0002-3079-7984
person.identifier.orcid 0000-0001-9002-9832
tuda.project EC/H2020 | 866008 | RED
tuda.project HMWK | 500/10.001-(00012) | TAM - TP Roth
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 2 of 2
NameDescriptionSizeFormat
semantic_selfadapt_checkpoints.zip499.62 MBZIP-Archivdateien Download
semantic_selfadapt_code.zip12.4 MBZIP-Archivdateien Download

Collections