Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Scene-Centric Unsupervised Panoptic Segmentation

datacite.relation.isSupplementTo https://arxiv.org/abs/2504.01955
dc.contributor.author Hahn, Oliver
dc.contributor.author Reich, Christoph
dc.contributor.author Araslanov, Nikita
dc.contributor.author Cremers, Daniel
dc.contributor.author Rupprecht, Christian
dc.contributor.author Roth, Stefan
dc.date.accessioned 2025-04-03T14:12:02Z
dc.date.available 2025-04-03T14:12:02Z
dc.date.created 2025-06-11
dc.date.issued 2025-04-03
dc.description Unsupervised panoptic segmentation aims to partition an image into semantically meaningful regions and distinct object instances without training on manually annotated data. In contrast to prior work on unsupervised panoptic scene understanding, we eliminate the need for object-centric training data, enabling the unsupervised understanding of complex scenes. To that end, we present the first unsupervised panoptic method that directly trains on scene-centric imagery. In particular, we propose an approach to obtain high-resolution panoptic pseudo labels on complex scene-centric data combining visual representations, depth, and motion cues. Utilizing both pseudo-label training and a panoptic self-training strategy yields a novel approach that accurately predicts panoptic segmentation of complex scenes without requiring any human annotations. Our approach significantly improves panoptic quality, e.g., surpassing the recent state of the art in unsupervised panoptic segmentation on Cityscapes by 9.4% points in PQ. Acknowledgments: This project was partially supported by the European Research Council (ERC) Advanced Grant SIMULACRON, DFG project CR 250/26-1 "4D-YouTube", and GNI Project ``AICC''. This project has also received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 866008). Additionally, this work has further been co-funded by the LOEWE initiative (Hesse, Germany) within the emergenCITY center [LOEWE/1/12/519/03/05.001(0016)/72] and by the State of Hesse through the cluster project ``The Adaptive Mind (TAM)''. Christoph Reich is supported by the Konrad Zuse School of Excellence in Learning and Intelligent Systems (ELIZA) through the DAAD programme Konrad Zuse Schools of Excellence in Artificial Intelligence, sponsored by the Federal Ministry of Education and Research. License: Code, predictions, and checkpoints are released under the Apache-2.0 license, except for the ResNet-50 DINO backbone (dino_RN50_pretrain_d2_format.pkl), which is adapted from CutLER and published under the CC BY-NC-SA 4.0 license. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4532
dc.language.iso en de_DE
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject unsupervised panoptic segmentation de_DE
dc.subject scene understanding de_DE
dc.subject unsupervised scene understanding de_DE
dc.subject unsupervised segmentation de_DE
dc.subject unsupervised learningsed de_DE
dc.subject panoptic segmentation de_DE
dc.subject segmentation de_DE
dc.subject computer vision de_DE
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Scene-Centric Unsupervised Panoptic Segmentation de_DE
dc.type Software de_DE
dcterms.accessRights openAccess
person.identifier.orcid 0009-0008-6164-1035
person.identifier.orcid 0000-0002-8616-1627
person.identifier.orcid 0000-0002-9424-8837
person.identifier.orcid 0000-0002-3079-7984
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid 0000-0001-9002-9832
tuda.project EC/H2020 | 866008 | RED
tuda.project HMWK | III L6-519/03/05.001-(0016) | emergenCity - TP Roth
tuda.project HMWK | 500/10.001-(00012) | TAM - TP Roth
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 6 of 6
NameDescriptionSizeFormat
raft_smurf.ptModel parameters20.07 MBUnknown data format Download
dino_RN50_pretrain_d2_format.pklModel parameters89.9 MBUnknown data format Download
depthg.ckptModel parameters336.3 MBUnknown data format Download
cups_code.zipTraining and inference code (PyTorch)27.67 MBZIP-Archivdateien Download
cups_cityscapes_predictions.zipInference results55.65 MBZIP-Archivdateien Download
cups.ckptModel parameters916.15 MBUnknown data format Download

Collections