Self-supervised Augmentation Consistency for Adapting Semantic Segmentation

datacite.relation.isDescribedBy https://arxiv.org/abs/2105.00097
dc.contributor.author Araslanov, Nikita
dc.contributor.author Roth, Stefan
dc.date.accessioned 2023-08-04T10:15:29Z
dc.date.available 2021-12-22T11:09:29Z
dc.date.available 2022-01-19T09:35:56Z
dc.date.available 2023-08-04T10:15:29Z
dc.date.created 2021-06
dc.date.issued 2023-08-04
dc.description We propose an approach to domain adaptation for semantic segmentation that is both practical and highly accurate. In contrast to previous work, we abandon the use of computationally involved adversarial objectives, network ensembles and style transfer. Instead, we employ standard data augmentation techniques − photometric noise, flipping and scaling − and ensure consistency of the semantic predictions across these image transformations. We develop this principle in a lightweight self-supervised framework trained on co-evolving pseudo labels without the need for cumbersome extra training rounds. Simple in training from a practitioner's standpoint, our approach is remarkably effective. We achieve significant improvements of the state-of-the-art segmentation accuracy after adaptation, consistent both across different choices of the backbone architecture and adaptation scenarios. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3366.3
dc.language.iso en de_DE
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject unsupervised domain adaptation de_DE
dc.subject semantic segmentation de_DE
dc.subject.classification 4.43-04
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Self-supervised Augmentation Consistency for Adapting Semantic Segmentation de_DE
dc.type Software de_DE
dcterms.accessRights openAccess
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
tuda.history.classification Version=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung
tuda.project HMWK | III L6-519/03/05.001-(0016) | emergenCity - TP Roth
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 3 of 3
NameDescriptionSizeFormat
da-sac-code.zipTraining and inference code (PyTorch)7.03 MBZIP-Archivdateien Download
results.zipInference results230.31 MBZIP-Archivdateien Download
snapshots.zipModel parameters (snapshots)7.83 GBZIP-Archivdateien Download

Collections

Version History

Now showing 1 - 1 of 1
VersionDateSummary
3*
2023-08-04 12:11:33
Adding missing third party funding
* Selected version