Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Single-stage Semantic Segmentation from Image Labels

datacite.relation.isDescribedBy https://arxiv.org/abs/2005.08104
dc.contributor.advisor
dc.contributor.author Araslanov, Nikita
dc.contributor.author Roth, Stefan
dc.date.accessioned 2021-12-22T11:09:34Z
dc.date.available 2021-12-22T11:09:34Z
dc.date.created 2020-06
dc.date.issued 2021-12-22
dc.description Recent years have seen a rapid growth in new approaches improving the accuracy of semantic segmentation in a weakly supervised setting, i.e. with only image-level labels available for training. However, this has come at the cost of increased model complexity and sophisticated multi-stage training procedures. This is in contrast to earlier work that used only a single stage − training one segmentation network on image labels − which was abandoned due to inferior segmentation accuracy. In this work, we first define three desirable properties of a weakly supervised method: local consistency, semantic fidelity, and completeness. Using these properties as guidelines, we then develop a segmentation-based network model and a self-supervised training scheme to train for semantic masks from image-level annotations in a single stage. We show that despite its simplicity, our method achieves results that are competitive with significantly more complex pipelines, substantially outperforming earlier single-stage methods. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3367
dc.language.iso en de_DE
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject weak supervision de_DE
dc.subject semantic segmentation de_DE
dc.subject.classification 4.43-04
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Single-stage Semantic Segmentation from Image Labels de_DE
dc.type Software de_DE
dcterms.accessRights openAccess
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
tuda.history.classification Version=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 3 of 3
NameDescriptionSizeFormat
1-stage-wseg-code.zipTraining and inference code (PyTorch)6.9 MBZIP-Archivdateien Download
snapshots.zipModel parameters (snapshots)862.39 MBZIP-Archivdateien Download
results.zipInference results4.08 GBZIP-Archivdateien Download

Collections