Research data for "Crystal structure identification with 3D convolutional neural networks with application to high-pressure phase transitions in SiO2"
dc.contributor.author | Erhard, Linus C. | |
dc.contributor.author | Utt, Daniel | |
dc.contributor.author | Klomp, Arne J. | |
dc.contributor.author | Albe, Karsten | |
dc.date.accessioned | 2024-03-22T12:03:32Z | |
dc.date.available | 2024-03-22T12:03:32Z | |
dc.date.created | 2024 | |
dc.date.issued | 2024-03-22 | |
dc.description | This dataset supports the paper "Crystal structure identification with 3D convolutional neural networks with application to high-pressure phase transitions in SiO2". The following files are provided: -The training database for the simple (artificial and MD) and the SiO2 structures --> The training data is provided in two different formats. In the "simple_training_dump" and "SiO2_training_dump" files, the dump files from the MD trajectories are provided. In the "simple_training_extracted" and "SiO2_training_extracted" files 1,000,000 extracted atomic environments in a numpy format are stored. -The holdout dataset for the simple structures -The snapshots of the SiO2 shock simulation | de_DE |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4188 | |
dc.identifier.uri | https://doi.org/10.48328/tudatalib-1394 | |
dc.language.iso | en | de_DE |
dc.rights.license | CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0) | |
dc.subject.classification | 4.32-04 | |
dc.subject.ddc | 620 | |
dc.title | Research data for "Crystal structure identification with 3D convolutional neural networks with application to high-pressure phase transitions in SiO2" | de_DE |
dc.type | Dataset | de_DE |
dcterms.accessRights | openAccess | |
person.identifier.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
person.identifier.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
person.identifier.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
person.identifier.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
tuda.history.classification | Version=2020-2024;406-04 Computergestütztes Werkstoffdesign und Simulation von Werkstoffverhalten von atomistischer bis mikroskopischer Skala | |
tuda.unit | TUDa |
Files
Original bundle
1 - 7 of 7
Name | Description | Size | Format | |
---|---|---|---|---|
SiO2_shock_dump.zip | 420.6 MB | ZIP-Archivdateien | ||
simple_holdout.zip | 285.26 MB | ZIP-Archivdateien | ||
simple_training_dump.zip | 14.28 GB | ZIP-Archivdateien | ||
simple_training_extracted.zip | 25.41 GB | ZIP-Archivdateien | ||
SiO2_training_dump_part1.zip | 29.98 GB | ZIP-Archivdateien | ||
SiO2_training_dump_part2.zip | 64.98 GB | ZIP-Archivdateien | ||
SiO2_training_extracted.zip | 28.87 GB | ZIP-Archivdateien |