Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

UKP ASPECT Corpus

datacite.relation.isSupplementTo https://aclanthology.org/P19-1054 en
dc.contributor.author Daxenberger, Johannes
dc.contributor.author Eger, Steffen
dc.contributor.author Gurevych, Iryna
dc.date.accessioned 2019-05-24T12:51:22Z
dc.date.available 2019-05-24T12:51:22Z
dc.date.created 2019-06
dc.date.issued 2019-05-24
dc.description The UKP ASPECT Corpus includes 3,595 sentence pairs over 28 controversial topics. The sentences were crawled from a large web crawl and identified as arguments for a given topic using the ArgumenText system. The sampling and matching of the sentence pairs is described in the paper. Then, the argument similarity annotation was done via crowdsourcing. Each crowd worker could choose from four annotation options (the exact guidelines are provided in the Appendix of the paper). en_US
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/1998
dc.language.iso en en_US
dc.rights CC BY-NC 3.0
dc.rights.licenseother
dc.rights.uri https://creativecommons.org/licenses/by-nc/3.0/
dc.subject Argument Similarity en_US
dc.subject Argument Mining en_US
dc.subject.ddc 000 Informatik, Informationswissenschaft, allgemeine Werke en_US
dc.subject.ddc 410 Linguistik en_US
dc.title UKP ASPECT Corpus en_US
dc.type Text en_US
dcterms.accessRights openAccess
person.identifier.orcid 0000-0002-7385-5654
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
tuda.tubiblio 113670

Files

Original bundle

Now showing 1 - 1 of 1
NameDescriptionSizeFormat
UKP_ASPECT.zip130.97 KBZIP-Archivdateien Download

Collections