Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Fast Axiomatic Attribution for Neural Networks

datacite.relation.isDescribedBy https://arxiv.org/abs/2111.07668
dc.contributor.author Hesse, Robin
dc.contributor.author Schaub-Meyer, Simone
dc.contributor.author Roth, Stefan
dc.date.accessioned 2023-08-04T09:31:38Z
dc.date.available 2022-01-19T09:36:04Z
dc.date.available 2023-08-04T09:31:38Z
dc.date.created 2021-12
dc.date.issued 2023-08-04
dc.description Mitigating the dependence on spurious correlations present in the training dataset is a quickly emerging and important topic of deep learning. Recent approaches include priors on the feature attribution of a deep neural network (DNN) into the training process to reduce the dependence on unwanted features. However, until now one needed to trade off high-quality attributions, satisfying desirable axioms, against the time required to compute them. This in turn either led to long training times or ineffective attribution priors. In this work, we break this trade-off by considering a special class of efficiently axiomatically attributable DNNs for which an axiomatic feature attribution can be computed with only a single forward/backward pass. We formally prove that nonnegatively homogeneous DNNs, here termed X-DNNs, are efficiently axiomatically attributable and show that they can be effortlessly constructed from a wide range of regular DNNs by simply removing the bias term of each layer. Various experiments demonstrate the advantages of X-DNNs, beating state-of-the-art generic attribution methods on regular DNNs for training with attribution priors. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3389.2
dc.language.iso en de_DE
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject deep learning de_DE
dc.subject interpretability de_DE
dc.subject attribution de_DE
dc.subject attribution prior de_DE
dc.subject.classification 4.43-04
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Fast Axiomatic Attribution for Neural Networks de_DE
dc.type Software de_DE
dcterms.accessRights openAccess
person.identifier.orcid 0000-0003-0458-5483
person.identifier.orcid 0000-0001-8644-1074
person.identifier.orcid 0000-0001-9002-9832
tuda.history.classification Version=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung
tuda.project EC/H2020 | 866008 | RED
tuda.project HMWK | 500/10.001-(00111) | 3AI-NWG Schaub-Meyer
tuda.project HMWK | 500/10.001-(00111) | 3AI - TP Roth
tuda.project HMWK | 500/10.001-(00012) | TAM - TP Roth
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 7 of 7
NameDescriptionSizeFormat
fast-axiomatic-attribution-main.zip16.4 MBZIP-Archivdateien Download
xfixup_resnet50_model_best.pth.tar194.61 MBUnknown data format Download
fixup_resnet50_model_best.pth.tar194.69 MBUnknown data format Download
alexnet_model_best.pth.tar466.17 MBUnknown data format Download
xalexnet_model_best.pth.tar466.09 MBUnknown data format Download
xvgg16_model_best.pth.tar1.03 GBUnknown data format Download
vgg16_model_best.pth.tar1.03 GBUnknown data format Download

Collections

Version History

Now showing 1 - 1 of 1
VersionDateSummary
2*
2023-08-04 11:26:36
Adding funding
* Selected version