Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 
Open Access

Selectional Preference Embeddings (EMNLP 2017)

Loading...
Thumbnail Image

Date

Type

Journal Title

Journal ISSN

Volume Title

Publisher

heiDATA

Abstract

Description

Joint embeddings of selectional preferences, words, and fine-grained entity types. The vocabulary consists of: * verbs and their dependency relation separated by "@", e.g. "sink@nsubj" or "elect@dobj" * words and short noun phrases, e.g. "Titanic" * fine-grained entity types using the FIGER inventory, e.g.: /product/ship or /person/politician The files are in word2vec binary format, which can be loaded in Python with gensim like this: ` from gensim.models import KeyedVectors emb_file = "/path/to/embedding_file" emb = KeyedVectors.load_word2vec_format(emb_file, binary=True) `

Citation

Identifier

Endorsement

DFG Classification

Project(s)

Faculty

License

Except where otherwise noted, this license is described as license.name.undefined