Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

RevUtil

datacite.relation.isDescribedBy https://arxiv.org/abs/2509.04484
datacite.relation.isDescribedBy https://aclanthology.org/2025.emnlp-main.1476/
dc.contributor.author Sadallah, Abdelrahman "Boda"
dc.contributor.author Baumgärtner, Tim
dc.contributor.author Gurevych, Iryna
dc.contributor.author Briscoe, Ted
dc.date.accessioned 2025-11-25T09:02:01Z
dc.date.created 2025-08-31
dc.date.issued 2025-11-25
dc.description Providing constructive feedback to paper authors is a core component of peer review. With reviewers increasingly having less time to perform reviews, automated support systems are required to ensure high reviewing quality, thus making the feedback in reviews useful for authors. To this end, we identify four key aspects of review comments (individual points in weakness sections of reviews) that drive the utility for authors: Actionability, Grounding & Specificity, Verifiability, and Helpfulness. To enable evaluation and development of models assessing review comments, we introduce the RevUtil dataset. We collect 1,430 human-labeled review comments and scale our data with 10k synthetically labeled comments for training purposes. The synthetic data additionally contains rationales, i.e., explanations for the aspect score of a review comment. Employing the RevUtil dataset, we benchmark fine-tuned models for assessing review comments on these aspects and generating rationales. Our experiments demonstrate that these fine-tuned models achieve agreement levels with humans comparable to, and in some cases exceeding, those of powerful closed models like GPT-4o. Our analysis further reveals that machine-generated reviews generally underperform human reviews on our four aspects.
dc.description.version v1.0
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4899
dc.language.iso en
dc.rights CC-BY-NC-SA 4.0
dc.rights.licenseother
dc.rights.uri https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.txt
dc.subject.classification 4.43-04
dc.subject.ddc 004
dc.title RevUtil
dc.type Dataset
dc.type Software
dcterms.accessRights openAccess
person.identifier.orcid 0009-0000-5488-8592
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
tuda.agreements true
tuda.project EC/HE | 101054961 | InterText
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 3 of 3
NameDescriptionSizeFormat
RevUtil_code-v1.0.zip2.37 MBZIP-Archivdateien Download
RevUtil_human-v1.0.zip22.3 MBZIP-Archivdateien Download
RevUtil_synthetic-v1.0.zip67.79 MBZIP-Archivdateien Download

Collections