Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Efficient Masked Attention Transformer for Few-Shot Classification and Segmentation

datacite.relation.isSupplementTo https://arxiv.org/abs/2507.23642
dc.contributor.author Carrión-Ojeda, Dustin
dc.contributor.author Roth, Stefan
dc.contributor.author Schaub-Meyer, Simone
dc.date.accessioned 2025-08-26T08:28:02Z
dc.date.created 2025-08-25
dc.date.issued 2025-08-26
dc.description Few-shot classification and segmentation (FS-CS) focuses on jointly performing multi-label classification and multi-class segmentation using few annotated examples. Although the current state of the art (SOTA) achieves high accuracy in both tasks, it struggles with small objects. To overcome this, we propose the Efficient Masked Attention Transformer (EMAT), which improves classification and segmentation accuracy, especially for small objects. EMAT introduces three modifications: a novel memory-efficient masked attention mechanism, a learnable downscaling strategy, and parameter-efficiency enhancements. EMAT outperforms all FS-CS methods on the PASCAL-5i and COCO-20i datasets, using at least four times fewer trainable parameters. Moreover, as the current FS-CS evaluation setting discards available annotations, despite their costly collection, we introduce two novel evaluation settings that consider these annotations to better reflect practical scenarios.
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4753
dc.language.iso en
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject few-shot learning
dc.subject efficiency
dc.subject semantic segmentation
dc.subject multi-label classification
dc.subject computer vision
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Efficient Masked Attention Transformer for Few-Shot Classification and Segmentation
dc.type Software
dcterms.accessRights openAccess
person.identifier.orcid 0000-0001-5322-9130
person.identifier.orcid 0000-0001-9002-9832
person.identifier.orcid 0000-0001-8644-1074
tuda.agreements true
tuda.project HMWK | 500/10.001-(00111) | 3AI-NWG Schaub-Meyer
tuda.project HMWK | 500/10.001-(00111) | 3AI - TP Roth
tuda.project EC/H2020 | 866008 | RED
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 10 of 10
NameDescriptionSizeFormat
emat-pascal.zipModel parameters316.21 MBZIP-Archivdateien Download
emat-coco.zipModel parameters316.18 MBZIP-Archivdateien Download
cst-pascal.zipModel parameters326.66 MBZIP-Archivdateien Download
cst-coco.zipModel parameters323.8 MBZIP-Archivdateien Download
cst-large-pascal.zipModel parameters326.92 MBZIP-Archivdateien Download
ematseg-pascal.zipModel parameters315.69 MBZIP-Archivdateien Download
ematseg-coco.zipModel parameters315.63 MBZIP-Archivdateien Download
emat_code.zipTraining and inference code (PyTorch)83.28 MBZIP-Archivdateien Download
emat_pascal_predictions.zipInference results82.87 MBZIP-Archivdateien Download
emat_coco_predictions.zipInference results96.2 MBZIP-Archivdateien Download

Collections