Constrained C-Test Generation via Mixed-Integer Programming (Supplementary Material)
Loading...
Date
2024-04-08
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
This work proposes a novel method to generate C-Tests; a deviated form of cloze tests (a gap filling exercise) where only the last part of a word is turned into a gap. In contrast to previous works that only consider varying the gap size or gap placement to achieve locally optimal solutions, we propose a mixed-integer programming (MIP) approach. This allows us to consider gap size and placement simultaneously, achieving globally optimal solutions and to directly integrate state-of-the-art models for gap difficulty prediction into the optimization problem. A user study with 40 participants across four C-Tests generation strategies (including GPT-4) shows that our approach (*MIP*) significantly outperforms two of the baseline strategies (based on gap placement and GPT-4); and performs on-par with the third (based on gap size). Our analysis shows that GPT-4 still struggles to fulfill explicit constraints during generation and that *MIP* produces C-Tests that correlate best with the perceived difficulty. We publish our code, model, and collected data consisting of 32 English C-Tests with 20 gaps each (3,200 in total) under an open source license.
Citation
Endorsement
Project(s)
Faculty
Collections
License
Except where otherwise noted, this license is described as CC BY 4.0 - Attribution 4.0 International