Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

DeSPITE: Exploring Contrastive Deep Skeleton-Pointcloud-IMU-Text Embeddings for Advanced Point Cloud Human Activity Understanding

datacite.relation.isSupplementTo https://arxiv.org/abs/2506.13897
dc.contributor.author Kreutz, Thomas
dc.contributor.author Mühlhäuser, Max
dc.contributor.author Sanchez Guinea, Alejandro
dc.date.accessioned 2025-07-21T13:27:31Z
dc.date.created 2025
dc.date.issued 2025-07-21
dc.description Despite LiDAR (Light Detection and Ranging) being an effective privacy-preserving alternative to RGB cameras to perceive human activities, it remains largely underexplored in the context of multi-modal contrastive pre-training for human activity understanding (e.g., human activity recognition (HAR), retrieval, or person re-identification (RE-ID)). To close this gap, our work explores learning the correspondence between LiDAR point clouds, human skeleton poses, IMU data, and text in a joint embedding space. More specifically, we present DeSPITE, a Deep Skeleton-Pointcloud-IMU-Text Embedding model, which effectively learns a joint embedding space across these four modalities. At the heart of our empirical exploration, we have combined the existing LIPD and Babel datasets, which enabled us to synchronize data of all four modalities, allowing us to explore the learning of a new joint embedding space. Our experiments demonstrate novel human activity understanding tasks for point cloud sequences enabled through DeSPITE, including Skeleton<->Pointcloud<->IMU matching, retrieval, and temporal moment retrieval. Furthermore, we show that DeSPITE is an effective pre-training strategy for point cloud HAR through experiments in MSR-Action3D and HMPEAR.
dc.description.version Models, Experiments, Data
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4680
dc.language.iso en
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject.classification 4.43-05
dc.subject.classification 4.43-04
dc.subject.ddc 004
dc.title DeSPITE: Exploring Contrastive Deep Skeleton-Pointcloud-IMU-Text Embeddings for Advanced Point Cloud Human Activity Understanding
dc.type Model
dc.type Dataset
dcterms.accessRights openAccess
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
tuda.agreements true
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 3 of 3
NameDescriptionSizeFormat
OpenAccess_models.zip985.14 MBZIP-Archivdateien Download
LIPD_preprocessed.zip1.76 GBZIP-Archivdateien Download
ICCV_experiments.zip36.32 GBZIP-Archivdateien Download

Collections