Der Login über E-Mail und Passwort wird in Kürze abgeschaltet. Für Externe steht ab sofort der Login über ORCID zur Verfügung.
The login via e-mail and password will be retired in the near future. External uses can login via ORCID from now on.
 

Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model

datacite.relation.isDescribedBy https://arxiv.org/abs/2503.23502
dc.contributor.author Endres, Jannik
dc.contributor.author Hahn, Oliver
dc.contributor.author Corbière, Charles
dc.contributor.author Schaub-Meyer, Simone
dc.contributor.author Roth, Stefan
dc.contributor.author Alahi, Alexandre
dc.date.accessioned 2025-04-10T14:03:25Z
dc.date.available 2025-04-10T14:03:25Z
dc.date.created 2025-03
dc.date.issued 2025-04-10
dc.description Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360° field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4557
dc.language.iso en de_DE
dc.rights.licenseApache-2.0 (https://www.apache.org/licenses/LICENSE-2.0)
dc.subject Depth Prediction de_DE
dc.subject Omnidirectional depth perception de_DE
dc.subject Stereo Matching de_DE
dc.subject deep learning de_DE
dc.subject foundation model de_DE
dc.subject.classification 4.43-04
dc.subject.classification 4.43-05
dc.subject.ddc 004
dc.title Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model de_DE
dc.type Software de_DE
dcterms.accessRights openAccess
person.identifier.orcid #PLACEHOLDER_PARENT_METADATA_VALUE#
person.identifier.orcid 0009-0008-6164-1035
person.identifier.orcid 0000-0001-8024-7553
person.identifier.orcid 0000-0001-8644-1074
person.identifier.orcid 0000-0001-9002-9832
person.identifier.orcid 0000-0002-5004-1498
tuda.project EC/H2020 | 866008 | RED
tuda.project HMWK | III L6-519/03/05.001-(0016) | emergenCity - TP Roth
tuda.project HMWK | 500/10.001-(00012) | TAM - TP Roth
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 2 of 2
NameDescriptionSizeFormat
dfi_omnistereo_code.zipTraining and Inference Code (PyTorch)2.96 MBZIP-Archivdateien Download
dfi_omnistereo_helvipad.pthModel parameters412.34 MBUnknown data format Download

Collections