Fine-tuned model weights for Stance Detection Benchmark System
| datacite.relation.isCitedBy | https://arxiv.org/abs/2001.01565 | |
| datacite.relation.isCitedBy | https://doi.org/10.1007/s13218-021-00714-w | |
| dc.contributor.author | Schiller, Benjamin | |
| dc.contributor.author | Daxenberger, Johannes | |
| dc.contributor.author | Gurevych, Iryna | |
| dc.date.accessioned | 2021-07-03T22:09:32Z | |
| dc.date.available | 2021-07-03T22:09:32Z | |
| dc.date.created | 2019 | |
| dc.date.issued | 2021-07-03 | |
| dc.description | This collection includes model weights (BERT-based), fine-tuned in a multi-task setting on 10 heterogeneous stance detection datasets. For more information, please refer to the paper and the GitHub repository linked in the paper. DISCLAIMER: The user acknowledges and agrees that the data is provided on an “as-is” basis and that the licensor makes no representations or warranties of any kind. | en_US |
| dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2848 | |
| dc.language.iso | en | en_US |
| dc.rights.license | In Copyright (https://rightsstatements.org/vocab/InC/1.0/) | |
| dc.subject | Stance Detection | en_US |
| dc.subject | Benchmark | en_US |
| dc.subject | Model weights | en_US |
| dc.subject.classification | 4.43-04 | |
| dc.subject.classification | 4.43-05 | |
| dc.subject.ddc | 004 | |
| dc.title | Fine-tuned model weights for Stance Detection Benchmark System | en_US |
| dc.type | Model | en_US |
| dcterms.accessRights | openAccess | |
| person.identifier.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| person.identifier.orcid | 0000-0002-7385-5654 | |
| person.identifier.orcid | 0000-0003-2187-7621 | |
| tuda.history.classification | Version=2016-2020;409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung | |
| tuda.project | PTJ | 03VP02540 | ArgumenText | |
| tuda.unit | TUDa |
Files
Original bundle
1 - 1 of 1
| Name | Description | Size | Format | |
|---|---|---|---|---|
| fine_tuned_models.zip | Fine-tuned model weights | 2.32 GB | ZIP-Archivdateien |
