TUdatalib Upgrade

Am 2. Juni erfolgte ein TUdatalib Upgrade auf eine neue Softwareversion. Dieses Upgrade bringt wichtige Neuerungen mit sich. Eine Übersicht finden Sie in der Dokumentation
On June 2nd, TUdatalib was upgraded to a new software version. This upgrade introduced major changes to the system. Please see our documentation for an overview.

 
Open Access

The extended Discontinuous Galerkin method adapted for moving contact line problems via the generalized Navier boundary condition: Data

Loading...
Thumbnail Image

Date

2020-10-16

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Description

In this work an extended Discontinuous Galerkin (extended DG/XDG also called unfitted DG) solver for flow problems exhibiting moving contact lines is presented. The generalized Navier boundary condition is employed within the XDG discretization for the handling of the moving contact lines. The spatial discretization is based on a symmetric interior penalty method and the numerical treatment of the surface tension force is done via the Laplace-Beltrami formulation. The XDG method adapts the approximation space conformal to the position of the interface and allows a sub-cell accurate representation within the sharp interface formulation. The interface is described as the zero set of a signed-distance level-set function and discretized by a standard DG method. No adaption of the level-set evolution algorithm is needed for the extension to moving contact line problems. The developed solver is validated against typical contact line driven flow phenomena including droplet simulations on a wall and the two-phase Couette flow.

Keywords

Citation

Endorsement

Faculty

Collections

License

Except where otherwise noted, this license is described as CC-BY-NC 4.0 - Attribution-NonCommercial 4.0 International