Classification of gravure printed patterns using singular value decomposition and machine learning (MATLAB code)

dc.contributor.author Rothmann-Brumm, Pauline
dc.date.accessioned 2023-05-16T15:08:26Z
dc.date.available 2023-05-16T15:08:26Z
dc.date.created 2023
dc.date.issued 2023-05-16
dc.description This dataset contains MATLAB code ('code_MachLearn_ImgClass.zip') for automated classification of gravure printed patterns from the [HYPA-p](https://doi.org/10.48328/tudatalib-1150) dataset. The developed algorithm performs singular value decomposition (SVD) and training of several machine learning classifiers, such as k-Nearest Neighbors (kNN). The classifiers are trained and tested on labeled data. Afterwards, the trained classifiers can be used for automated classification of unlabeled data. Further information can be found in the provided README-file. de_DE
dc.identifier.uri https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3843
dc.identifier.uri https://doi.org/10.48328/tudatalib-1152
dc.language.iso en de_DE
dc.rights.licenseCC-BY-NC-4.0 (https://creativecommons.org/licenses/by-nc/4.0)
dc.subject MATLAB code de_DE
dc.subject reduced-order modeling de_DE
dc.subject pattern classification de_DE
dc.subject singular value decomposition de_DE
dc.subject machine learning de_DE
dc.subject gravure printing de_DE
dc.subject hydrodynamic pattern formation de_DE
dc.subject.classification 4.21-03
dc.subject.classification 4.22-03
dc.subject.classification 4.31-03
dc.subject.ddc 660
dc.subject.ddc 620
dc.title Classification of gravure printed patterns using singular value decomposition and machine learning (MATLAB code) de_DE
dc.type Text de_DE
dc.type Software de_DE
dc.type Image de_DE
dc.type Other de_DE
dcterms.accessRights openAccess
person.identifier.orcid 0000-0002-8220-0676
tuda.history.classification Version=2020-2024;403-03 Mechanische Verfahrenstechnik
tuda.history.classification Version=2020-2024;404-03 Strömungsmechanik
tuda.history.classification Version=2020-2024;405-03 Beschichtungs- und Oberflächentechnik
tuda.project DFG | SFB1194 | TP C01 Dörsam
tuda.unit TUDa

Files

Original bundle

Now showing 1 - 8 of 8
NameDescriptionSizeFormat
README_MachLearn_ImgClass.txt10.03 KBPlain Text Download
code_MachLearn_ImgClass.zip269.47 MBZIP-Archivdateien Download
dots_all.mat4.34 GBUnknown data format Download
fingers_all.mat6.41 GBUnknown data format Download
mixed_all.mat1.74 GBUnknown data format Download
SVD_data.zip36.53 GBZIP-Archivdateien Download
S-subfields_B3-01.mat21.58 GBUnknown data format Download
S-subfields_B3-05.mat21.22 GBUnknown data format Download

Collections