dc.contributor.author | Maric, Tomislav | |
dc.contributor.author | Weiner, Andre | |
dc.date.accessioned | 2022-07-11T17:58:22Z | |
dc.date.available | 2022-07-09T22:51:10Z | |
dc.date.available | 2022-07-11T17:58:22Z | |
dc.date.issued | 2022-07-10 | |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3528.2 | |
dc.identifier.uri | https://doi.org/10.48328/tudatalib-913.2 | |
dc.description | Slides from the Training "Towards physics-based deep learning in OpenFOAM: Combining OpenFOAM with the PyTorch C++ API" given at the 17th OpenFOAM Workshop | de_DE |
dc.language.iso | en | de_DE |
dc.rights | Creative Commons Attribution 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | machine learning | de_DE |
dc.subject | physics-informed neural networks | de_DE |
dc.subject | computational fluid dynamics | de_DE |
dc.subject | openfoam | de_DE |
dc.subject.classification | 404-03 Strömungsmechanik | de_DE |
dc.subject.ddc | 620 | |
dc.title | Towards physics-based deep learning in OpenFOAM: Combining OpenFOAM with the PyTorch C++ API (Slides) | de_DE |
dc.type | Text | de_DE |
dc.description.version | 1.0 | de_DE |
tud.unit | TUDa | |