Hinweis

Dies ist nicht die aktuellste Version dieses Datensatzes. Die aktuellste Version finden Sie unter: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2625.2

Zur Kurzanzeige

dc.contributor.authorDirba, Imants
dc.contributor.authorChandra, Caroline Karina
dc.contributor.authorGutfleisch, Oliver
dc.date.accessioned2021-03-09T06:47:46Z
dc.date.available2021-03-09T06:47:46Z
dc.date.issued2021-03-10
dc.identifier.urihttps://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2625
dc.identifier.urihttps://doi.org/10.48328/tudatalib-438
dc.descriptionAn in-house developed framework based on Python JupyterLab, to find the magnetic fluid hyperthermia maximum power dissipation and optimum particle size for each investigated material at the simulated applied magnetic field amplitude and frequency conditions.en_US
dc.language.isoenen_US
dc.rightsCreative Commons Attribution-NonCommercial 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectMagnetic fluid hyperthermiaen_US
dc.subjectRelaxation timeen_US
dc.subjectPower dissipationen_US
dc.subjectiron nitridesen_US
dc.subjectiron boridesen_US
dc.subjectiron carbidesen_US
dc.subjectiron oxidesen_US
dc.subjectPythonen_US
dc.subjectJupyterLaben_US
dc.subject.classification307-01 Experimentelle Physik der kondensierten Materieen_US
dc.subject.ddc530
dc.titleModelling of alternative materials for enhanced magnetic fluid hyperthermiaen_US
dc.typeDataseten_US
dc.typeTexten_US
dc.typeSoftwareen_US
dc.typeImageen_US
dc.typeModelen_US
tud.unitTUDa


Dateien zu dieser Ressource

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Der Datensatz erscheint in:

Zur Kurzanzeige

Creative Commons Attribution-NonCommercial 4.0
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Creative Commons Attribution-NonCommercial 4.0
VersionDatensatzVersionsbeschreibungDatumZusammenfassung

* Ausgewählte Version